?? ogl_benchmark_sphere.cpp
字號:
glEnable( GL_TEXTURE_2D );
glEnable( GL_DEPTH_TEST );
loadTexture();
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective( 45.0f, 640.0f / 480.0f, 0.1f, 100.0f );
//
// Create the first sphere...
//
// Inform the user of the current mode
cout << "Render Method: Immediate Mode" << endl;
createSphereGeometry( 0.0f, 0.0f, 0.0f, 1.5f, g_nPrecision );
}
//-----------------------------------------------------------------------------
// Name: shutDown()
// Desc:
//-----------------------------------------------------------------------------
void shutDown( void )
{
glDeleteTextures( 1, &g_textureID );
if( g_hRC != NULL )
{
wglMakeCurrent( NULL, NULL );
wglDeleteContext( g_hRC );
g_hRC = NULL;
}
if( g_hRC != NULL )
{
ReleaseDC( g_hWnd, g_hDC );
g_hDC = NULL;
}
}
//-----------------------------------------------------------------------------
// Name: renderSphere()
// Desc: Create a sphere centered at cy, cx, cz with radius r, and
// precision p. Based on a function Written by Paul Bourke.
// http://astronomy.swin.edu.au/~pbourke/opengl/sphere/
//-----------------------------------------------------------------------------
void renderSphere( float cx, float cy, float cz, float r, int p )
{
const float PI = 3.14159265358979f;
const float TWOPI = 6.28318530717958f;
const float PIDIV2 = 1.57079632679489f;
float theta1 = 0.0;
float theta2 = 0.0;
float theta3 = 0.0;
float ex = 0.0f;
float ey = 0.0f;
float ez = 0.0f;
float px = 0.0f;
float py = 0.0f;
float pz = 0.0f;
// Disallow a negative number for radius.
if( r < 0 )
r = -r;
// Disallow a negative number for precision.
if( p < 0 )
p = -p;
// If the sphere is too small, just render a OpenGL point instead.
if( p < 4 || r <= 0 )
{
glBegin( GL_POINTS );
glVertex3f( cx, cy, cz );
glEnd();
return;
}
for( int i = 0; i < p/2; ++i )
{
theta1 = i * TWOPI / p - PIDIV2;
theta2 = (i + 1) * TWOPI / p - PIDIV2;
glBegin( GL_TRIANGLE_STRIP );
{
for( int j = 0; j <= p; ++j )
{
theta3 = j * TWOPI / p;
ex = cosf(theta2) * cosf(theta3);
ey = sinf(theta2);
ez = cosf(theta2) * sinf(theta3);
px = cx + r * ex;
py = cy + r * ey;
pz = cz + r * ez;
glNormal3f( ex, ey, ez );
glTexCoord2f( -(j/(float)p) , 2*(i+1)/(float)p );
glVertex3f( px, py, pz );
ex = cosf(theta1) * cosf(theta3);
ey = sinf(theta1);
ez = cosf(theta1) * sinf(theta3);
px = cx + r * ex;
py = cy + r * ey;
pz = cz + r * ez;
glNormal3f( ex, ey, ez );
glTexCoord2f( -(j/(float)p), 2*i/(float)p );
glVertex3f( px, py, pz );
}
}
glEnd();
}
}
//-----------------------------------------------------------------------------
// Name: createSphereDisplayList()
// Desc: Build Sphere Display List
//-----------------------------------------------------------------------------
void createSphereDisplayList()
{
glDeleteLists( g_sphereDList, 0 );
static bool firstPass = true;
if( firstPass )
{
g_sphereDList = glGenLists(1);
firstPass = false;
}
if( g_sphereDList != 0 )
{
glNewList( g_sphereDList, GL_COMPILE );
// Cache the calls needed to render a sphere
renderSphere( 0.0f, 0.0f, 0.0f, 1.5f, g_nPrecision );
glEndList();
}
}
//-----------------------------------------------------------------------------
// Name: setVertData()
// Desc: Helper function for createSphereGeometry()
//-----------------------------------------------------------------------------
void setVertData( int index,
float tu, float tv,
float nx, float ny, float nz,
float vx, float vy, float vz )
{
(g_pSphereVertices+index)->tu = tu;
(g_pSphereVertices+index)->tv = tv;
(g_pSphereVertices+index)->nx = nx;
(g_pSphereVertices+index)->ny = ny;
(g_pSphereVertices+index)->nz = nz;
(g_pSphereVertices+index)->vx = vx;
(g_pSphereVertices+index)->vy = vy;
(g_pSphereVertices+index)->vz = vz;
}
//-----------------------------------------------------------------------------
// Name: createSphereGeometry()
// Desc: Creates a sphere as an array of vertex data suitable to be fed into a
// OpenGL vertex array. The sphere will be centered at cy, cx, cz with
// radius r, and precision p. Based on a function Written by Paul Bourke.
// http://astronomy.swin.edu.au/~pbourke/opengl/sphere/
//-----------------------------------------------------------------------------
void createSphereGeometry( float cx, float cy, float cz, float r, int p )
{
const float PI = 3.14159265358979f;
const float TWOPI = 6.28318530717958f;
const float PIDIV2 = 1.57079632679489f;
float theta1 = 0.0;
float theta2 = 0.0;
float theta3 = 0.0;
float ex = 0.0f;
float ey = 0.0f;
float ez = 0.0f;
float px = 0.0f;
float py = 0.0f;
float pz = 0.0f;
float tu = 0.0f;
float tv = 0.0f;
//-------------------------------------------------------------------------
// If sphere precision is set to 4, then 20 verts will be needed to
// hold the array of GL_TRIANGLE_STRIP(s) and so on...
//
// Example:
//
// total_verts = (p/2) * ((p+1)*2)
// total_verts = (4/2) * ( 5 *2)
// total_verts = 2 * 10
// total_verts = 20
//-------------------------------------------------------------------------
g_nNumSphereVertices = (p/2) * ((p+1)*2);
if( g_pSphereVertices != NULL )
{
delete []g_pSphereVertices;
g_pSphereVertices = NULL;
g_pSphereVertices = new Vertex[g_nNumSphereVertices];
}
else
{
g_pSphereVertices = new Vertex[g_nNumSphereVertices];
}
// Disallow a negative number for radius.
if( r < 0 )
r = -r;
// Disallow a negative number for precision.
if( p < 4 )
p = 4;
int k = -1;
for( int i = 0; i < p/2; ++i )
{
theta1 = i * TWOPI / p - PIDIV2;
theta2 = (i + 1) * TWOPI / p - PIDIV2;
for( int j = 0; j <= p; ++j )
{
theta3 = j * TWOPI / p;
ex = cosf(theta2) * cosf(theta3);
ey = sinf(theta2);
ez = cosf(theta2) * sinf(theta3);
px = cx + r * ex;
py = cy + r * ey;
pz = cz + r * ez;
tu = -(j/(float)p);
tv = 2*(i+1)/(float)p;
++k;
setVertData( k, tu, tv, ex, ey, ez, px, py, pz );
ex = cosf(theta1) * cosf(theta3);
ey = sinf(theta1);
ez = cosf(theta1) * sinf(theta3);
px = cx + r * ex;
py = cy + r * ey;
pz = cz + r * ez;
tu = -(j/(float)p);
tv = 2*i/(float)p;
++k;
setVertData( k, tu, tv, ex, ey, ez, px, py, pz );
}
}
}
//-----------------------------------------------------------------------------
// Name: doBenchmark()
// Desc:
//-----------------------------------------------------------------------------
void doBenchmark()
{
timeb start;
timeb finish;
float fElapsed = 0.0f;
int nFrames = 1000;
ftime( &start ); // Get the time
while( nFrames-- ) // Loop away
render();
ftime( &finish ); // Get the time again
fElapsed = (float)(finish.time - start.time); // This is accurate to one second
fElapsed += (float)((finish.millitm - start.millitm)/1000.0); // This gets it down to one ms
cout << endl;
cout << "-- Benchmark Report --" << endl;
if( g_nCurrentMode == IMMEDIATE_MODE )
cout << "Render Method: Immediate Mode" << endl;
if( g_nCurrentMode == DISPLAY_LIST )
cout << "Render Method: Display List" << endl;
if( g_nCurrentMode == VERTEX_ARRAY )
cout << "Render Method: Vertex Array" << endl;
cout << "Frames Rendered: 1000" << endl;
cout << "Sphere Resolution: " << g_nPrecision << endl;
cout << "Primitive Used: GL_TRIANGLE_STRIP" << endl;
cout << "Elapsed Time: " << fElapsed << endl;
cout << "Frames Per Second: " << 1000.0/fElapsed << endl;
cout << endl;
}
//-----------------------------------------------------------------------------
// Name: render()
// Desc:
//-----------------------------------------------------------------------------
void render( void )
{
// Clear the screen and the depth buffer
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( 0.0f, 0.0f, -5.0f );
glRotatef( -g_fSpinY, 1.0f, 0.0f, 0.0f );
glRotatef( -g_fSpinX, 0.0f, 1.0f, 0.0f );
if( g_bRenderInWireFrame == true )
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
else
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
//
// Render test sphere...
//
glBindTexture( GL_TEXTURE_2D, g_textureID );
if( g_nCurrentMode == IMMEDIATE_MODE )
{
// Render a textured sphere using immediate mode
// To be fair to immediate mode, we won't force it incur the overhead
// of calling hundreds of math subroutines to generate a sphere each
// frame, instead, we'll use the same array that we would use for
// testing the vertex array, but we'll make the immediate mode calls
// ourselves. This is more typical of how a real app would use
// immediate mode calls.
glBegin( GL_TRIANGLE_STRIP );
{
for( GLuint i = 0; i < g_nNumSphereVertices; ++i )
{
glNormal3f( (g_pSphereVertices+i)->nx,
(g_pSphereVertices+i)->ny,
(g_pSphereVertices+i)->nz );
glTexCoord2f( (g_pSphereVertices+i)->tu,
(g_pSphereVertices+i)->tv );
glVertex3f( (g_pSphereVertices+i)->vx,
(g_pSphereVertices+i)->vy,
(g_pSphereVertices+i)->vz );
}
}
glEnd();
}
if( g_nCurrentMode == DISPLAY_LIST )
{
// Render a textured sphere as a display list
glCallList( g_sphereDList );
}
if( g_nCurrentMode == VERTEX_ARRAY )
{
// Render a textured sphere using a vertex array
glInterleavedArrays( GL_T2F_N3F_V3F, 0, g_pSphereVertices );
glDrawArrays( GL_TRIANGLE_STRIP, 0, g_nNumSphereVertices );
}
SwapBuffers( g_hDC );
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -