?? ball.m
字號:
% Script file: ball.m
%
% Purpose:
% This program calculates the distance traveled by a ball
% thrown at a specified angle "theta" and a specified
% velocity "vo" from a point on the surface of the Earth,
% ignoring air friction and the Earth's curvature. It
% calculates the angle yielding maximum range, and also
% plots selected trajectories.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 12/10/97 S. J. Chapman Original code
%
% Define variables:
% conv -- Degrees to radians conv factor
% gravity -- Accel. due to gravity (m/s^2)
% ii, jj -- Loop index
% index -- Location of maximum range in array
% maxangle -- Angle that gives maximum range (deg)
% maxrange -- Maximum range (m)
% range -- Range for a particular angle (m)
% time -- Time (s)
% theta -- Initial angle (deg)
% traj_time -- Total trajectory time (s)
% vo -- Initial velocity (m/s)
% vxo -- X-component of initial velocity (m/s)
% vyo -- Y-component of initial velocity (m/s)
% x -- X-position of ball (m)
% y -- Y-position of ball (m)
% Constants
conv = pi / 180; % Degrees-to-radians conversion factor
g = -9.81; % Accel. due to gravity
vo = 20; % Initial velocity
%Create an array to hold ranges
range = zeros(1,91);
% Calculate maximum ranges
for ii = 1:91
theta = ii - 1;
vxo = vo * cos(theta*conv);
vyo = vo * sin(theta*conv);
traj_time = -2 * vyo / g;
range(ii) = vxo * traj_time;
end
% Write out table of ranges
fprintf ('Range versus angle theta:\n');
for ii = 1:91
theta = ii - 1;
fprintf(' %2d %8.4f\n',theta, range(ii));
end
% Calculate the maximum range and angle
[maxrange index] = max(range);
maxangle = index - 1;
fprintf ('\nMax range is %8.4f at %2d degrees.\n',...
maxrange, maxangle);
% Now plot the trajectories
for ii = 5:10:85
% Get velocities and max time for this angle
theta = ii;
vxo = vo * cos(theta*conv);
vyo = vo * sin(theta*conv);
traj_time = -2 * vyo / g;
% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21
time = (jj-1) * traj_time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0.5 * g * time^2;
end
plot(x,y,'b');
if ii == 5
hold on;
end
end
% Add titles and axis lables
title ('\bfTrajectory of Ball vs Initial Angle \theta');
xlabel ('\bf\itx \rm\bf(meters)');
ylabel ('\bf\ity \rm\bf(meters)');
axis ([0 45 0 25]);
grid on;
% Now plot the max range trajectory
vxo = vo * cos(maxangle*conv);
vyo = vo * sin(maxangle*conv);
traj_time = -2 * vyo / g;
% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21
time = (jj-1) * traj_time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0.5 * g * time^2;
end
plot(x,y,'r','LineWidth',3.0);
hold off
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -