?? data_as.htm
字號:
<html><head><title>學(xué)用MatLab</title><meta http-equiv="Content-Type" content="text/html; charset=gb2312"><style type="text/css"><!--body { font-family: "宋體"; font-size: 9pt; text-decoration: none}h2 { font-family: "楷體_GB2312"; font-size: 18pt; text-decoration: underline; color: #FF9999}h1 { font-family: "隸書"; font-size: 24pt; font-style: italic; font-weight: bolder; color: #CC66CC; text-decoration: blink}.explain { border-color: black black #00FF00; font-weight: bold; color: #333333}.code { font-family: "Arial", "Helvetica", "sans-serif"; font-size: 12pt; background-color: #FFFFFF; line-height: 24pt}h3 { font-size: 12pt; font-style: italic; font-weight: bold; color: #9999FF}--></style><script language="JavaScript"><!--function MM_popupMsg(msg) { //v1.0 alert(msg);}//--></script></head><body bgcolor="#CCFFCC" text="#666600" link="#009900" alink="#00FF00" vlink="#006600"><h1 align="center">數(shù)據(jù)分析和統(tǒng)計</h1><h2>面向列的數(shù)據(jù)集 </h2><p> 這年頭似乎十分風(fēng)行”面向”這個詞,這兒故也套用,其英文為"Column-Oriented Data Sets",可理解為MatLab按列的存儲方式來分析數(shù)據(jù),下面是一個例子: </p><p>Time Location 1 Location 2 Location 3 <br> 01h00 11 11 9 <br> 02h00 7 13 11 <br> 03h00 14 17 20 <br> 04h00 11 13 9 <br> 05h00 43 51 69 <br> 06h00 38 46 76 <br> 07h00 61 132 186 <br> 08h00 75 135 180 <br> 09h00 38 88 115 <br> 10h00 28 36 55 <br> 11h00 12 12 14 <br> 12h00 18 27 30 <br> 13h00 18 19 29 <br> 14h00 17 15 18 <br> 15h00 19 36 48 <br> 16h00 32 47 10 <br> 17h00 42 65 92 <br> 18h00 57 66 151 <br> 19h00 44 55 90 <br> 20h00 114 145 257 <br> 21h00 35 58 68 <br> 22h00 11 12 15 <br> 23h00 13 9 15 <br> 24h00 10 9 7 </p><p>以上數(shù)據(jù)被保存在一個稱為count.dat的文件中.</p><p>11 11 9 <br> 7 13 11 <br> 14 17 20 <br> 11 13 9 <br> 43 51 69 <br> 38 46 76 <br> 61 132 186 <br> 75 135 180 <br> 38 88 115 <br> 28 36 55 <br> 12 12 14 <br> 18 27 30 <br> 18 19 29 <br> 17 15 18 <br> 19 36 48 <br> 32 47 10 <br> 42 65 92 <br> 57 66 151 <br> 44 55 90 <br> 114 145 257 <br> 35 58 68 <br> 11 12 15 <br> 13 9 15 <br> 10 9 7</p><p>下面,我們調(diào)入此文件,并看看文件的一些參數(shù)</p><p class="code">load count.dat<br> [n,p] = size(count) <br> n = <br> 24 <br> p = <br> 3 </p><p>創(chuàng)建一個時間軸后,我們可以把圖畫出來:</p><p class="code">t = 1:n;<br> set(0,'defaultaxeslinestyleorder’,’-|--|-.’) <br> set(0,'defaultaxescolororder’,[0 0 0]) <br> plot(t,count), legend('Location 1','Location 2','Location 3',0) <br> xlabel('Time'), ylabel('Vehicle Count'), grid on </p><p><img src="image/data1.jpg" width="679" height="487"></p><p>足以證明,<span class="explain">以上是對3個對象的24次觀測</span>.</p><h2 align="left">基本數(shù)據(jù)分析函數(shù)</h2><p class="explain">(一定注意是面向列的) </p><p>繼續(xù)用上面的數(shù)據(jù),其每列最大值.均值.及偏差分別為:</p><p class="code">mx = max(count) <br> mu = mean(count) <br> sigma = std(count) <br> mx = <br> 114 145 257 <br> mu = <br> 32.0000 46.5417 65.5833 <br> sigma = <br> 25.3703 41.4057 68.0281</p><p>重載函數(shù),還可以定位出最大.最小值的位置</p><p class="code">[mx,indx] = min(count) <br> mx = <br> 7 9 7 <br> indx = <br> 2 23 24</p><p>試試看,你能看懂下面的命令是干什么的嗎?</p><p class="code">[n,p] = size(count) <br> e = ones(n,1) <br> x = count – e*mu</p><p><a href="javascript:void(null)" onClick="MM_popupMsg('這是把該矩陣的每個元素減去其所在列的均值')">點這</a>看看答案!</p><p>下面這句命令則找出了整個矩陣的最小值:</p><p class="code">min(count(:))<br> ans = <br> 7 </p><h3>協(xié)方差及相關(guān)系數(shù)</h3><p>下面,我們來看看第一列的方差:</p><p class="code">cov(count(:,1)) <br> ans = <br> 643.6522</p><p>cov()函數(shù)作用于矩陣,則會計算其協(xié)方差矩陣.</p><p>corrcoef()用于計算相關(guān)系數(shù),如:</p><p class="code">corrcoef(count)<br> ans = <br> 1.0000 0.9331 0.9599 <br> 0.9331 1.0000 0.9553 <br> 0.9599 0.9553 1.0000 </p><h2>數(shù)據(jù)的預(yù)處理</h2><h3>未知數(shù)據(jù)</h3><p>NaN(Not a Number--不是一個數(shù))被定義為未經(jīng)定義的算式的結(jié)果,如 0/0.在處理數(shù)據(jù)中,NaN常用來表示未知數(shù)據(jù)或未能獲得的數(shù)據(jù).所有與NaN有關(guān)的運算其結(jié)果都是NaN.</p><p class="code">a = magic(3); <br> a(2,2) = NaN <br> a = <br> 8 1 6 <br> 3 NaN 7 <br> 4 9 2<br> sum(a) <br> ans = <br> 15 NaN 15 </p><p>在做統(tǒng)計時,常需要將NaN轉(zhuǎn)化為可計算的數(shù)字或去掉,以下是幾種方法:<br> <span class="explain">注:判斷一個值是否為NaN,只能用 isnan(),而不可用 x==NaN</span>; </p><table width="75%" border="1" height="143" bordercolorlight="#CCFF66" bordercolordark="#66FF00"> <tr> <td height="46" width="38%">i = find( ~ isnan(x));<br> x = x(i) </td> <td height="46" width="62%">先找出值不是NaN的項的下標,將這些元素保留</td> </tr> <tr> <td width="38%">x = x(find( ~ isnan(x)))</td> <td width="62%">同上,去掉NaN</td> </tr> <tr> <td width="38%">x = x( ~ isnan(x));</td> <td width="62%">更快的做法</td> </tr> <tr> <td width="38%">x(isnan(x)) = [];</td> <td width="62%">消掉NaN</td> </tr> <tr> <td width="38%">X(any(isnan(X)’),:) = [];</td> <td width="62%">把含有NaN的行都去掉</td> </tr></table><p>用此法可以從數(shù)據(jù)中去掉不相關(guān)的數(shù)據(jù),看看下面的命令是干什么用的:</p><p class="code">mu = mean(count); <br> sigma = std(count);<br> [n,p] = size(count) <br> outliers = abs(count — mu(ones(n, 1),:)) > 3*sigma(ones(n, 1),:); <br> nout = sum(outliers) <br> nout = <br> 1 0 0 <br> count(any(outliers'),:) = [];</p><p><a href="javascript:void(null)" onClick="MM_popupMsg('找出數(shù)據(jù)集中 數(shù)據(jù)值偏離均值 比 該數(shù)據(jù)所在列的偏差 要大三倍的數(shù)據(jù),并將含有此數(shù)據(jù)的那次觀測值去掉!')">點這</a>看看答案 </p><h2>回歸與曲線擬合</h2><p> 我們經(jīng)常需要把觀測到的數(shù)據(jù)表達為函數(shù),假如有如下的對時間的觀測:</p><p class="code">t = [0 .3 .8 1.1 1.6 2.3]’; <br> y = [0.5 0.82 1.14 1.25 1.35 1.40]’; <br> plot(t,y,’o’), <br> grid on</p><p><img src="image/data2.jpg" width="423" height="375"></p><h3>多項式回歸</h3><p>由圖可以看出應(yīng)該可以用多項式來表達:y=a0+a1*t+a2*t^2<br> 系數(shù)a0,a1,a2可以由最小平方擬合來確定,這一步可由反除號"\"來完成<br> 解下面的三元方程組可得: </p><p class="code">X = [ones(size(t)) t t.^2] <br> X = <br> 1.0000 0 0 <br> 1.0000 0.3000 0.0900 <br> 1.0000 0.8000 0.6400 <br> 1.0000 1.1000 1.2100 <br> 1.0000 1.6000 2.5600 <br> 1.0000 2.3000 5.2900 <br> a = X\y <br> a = <br> 0.5318 0.9191 –0.2387 </p><p>a即為待求的系數(shù),畫圖比較可得</p><p class="code">T = (0:0.1:2.5)’; <br> Y = [ones(size(T)) T T.^2]*a; <br> plot(T,Y,'–',t,y,'o',), grid on</p><p><img src="image/data3.jpg" width="503" height="369"></p><p>結(jié)果令人失望,但我們可以增加階數(shù)來提高精確度,但更明智的選擇是用別的方法.</p><h3>線性參數(shù)回歸</h3><p>形如:y=a0+a1*exp(-t)+a2*t*exp(-t)<br> 計算方法同上:</p><p class="code">X = [ones(size(t)) exp(– t) t.*exp(– t)]; <br> a = X\y <br> a = <br> 1.3974 – 0.8988 0.4097 <br> T = (0:0.1:2.5)'; <br> Y = [ones(size(T)) exp(– T) T.exp(– T)]*a; <br> plot(T,Y,'–',t,y,'o'), grid on </p><p><img src="image/data4.jpg" width="494" height="375"></p><p>看起來是不是好多了!</p><h2>例子研究:曲線擬合</h2>
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -