亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? apriori.html

?? apriori算法是數(shù)據(jù)挖掘的經(jīng)典算法之1,其基于關(guān)聯(lián)規(guī)則的思想.這是我的第2個(gè)收藏算法
?? HTML
?? 第 1 頁 / 共 4 頁
字號(hào):
distribution of two discrete variables and the actual joint distributionin order to determine how strongly two variables depend on each other.This measure (as it is defined in statistics) contains the number ofcases it is computed from as a factor. This is not very appropriateif one wants to evaluate rules that can have varying support. Hencethis factor is removed by simply dividing the measure by the numberof items sets (the total number, i.e. with the names used above, thenumber of sets in X). With this normalization, the chi<sup>2</sup>measure can assume values between 0 (no dependence) and 1 (very strongdependence). The value that can be given via the <tt>-d</tt> option isa lower bound for the strength of the dependence of the head on thebody in percent (0 - no dependence, 100 - perfect dependence). Onlythose rules are selected, in which the head depends on the body witha higher degree of dependence.</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><h4><a name="behavior">Selection Behavior of the Measures</a></h4><p>In the directory <tt>apriori/doc</tt> you can find a Gnuplot scriptnamed <tt>arem.gp</tt> (<tt>arem</tt> stands for additional ruleevaluation measures) which visualizes the behavior of the additionalrule evaluation measures. This script draws eight 3d graphs, one forthe absolute confidence difference, one for the difference of theconfidence quotient to one, three for the information difference tothe prior confidence and three for the normalized chi<sup>2</sup>measure. All graphs show the value of an additional rule evaluationmeasure over a plane defined by the prior and the posterior confidenceof a rule. The latter two measures need three graphs, since they dependon the antecedent support of a rule as a third parameter. Setting aminimal value for an additional rule evaluation measure is likeflooding the corresponding graph landscape up to a certain level(given as a percentage, since all considered measures assume valuesbetween 0 and 1). Only those rules are selected that sit on dry land.</p><p>The first graph shows the behavior of the absolute confidencedifference. For the diagonal, i.e. the line where the prior and theposterior confidence are identical, its value is zero (as expected).The more the two confidences differ, the higher the value of thismeasure gets, but in a linear way.</p><p>The second graph shows the behavior of the confidence quotientto one. Again its value is zero for the diagonal (as the value ofall measures is) and becomes greater the more the prior and theposterior confidence differ. But it is much steeper for a smallprior confidence than for a large one and it is non-linear.</p><p>The third to fifth graph show the information difference to theprior confidence for an antecedent support (which is identical to therule support in my interpretation, see above) of 0.2 (20%), 0.3 (30%)and 0.4 (40%). The regions at the margins, where the measure is zero,correspond to impossible combinations of prior and posterior confidenceand antecedent support. As you can see, the valley gets narrower withincreasing antecedent support. I.e., with the same minimal value forthis measure, rules with low antecedent support need a higher confidencedifference to be selected than rules with a high antecedent support.This nicely models the statistical significance of confidence changes.If you only have a few cases to support your rule, even a largedeviation from the prior confidence can be explained by randomfluctuations, since only a few transactions need to be different toproduce a considerable change. However, if the antecedent supportis large, even a small deviation (in percent) has to be consideredsignificant (non random), since it takes a lot of changes totransactions to produce even a small change in the percentage.This dependence on the antecedent support of the rule and that thevalley is not pointed at the diagonal (which means that even a lowminimal value can exclude a lot of rules) is the main differencebetween the information gain and the normalized chi<sup>2</sup>measure on the one hand and the absolute confidence difference anddifference of the confidence quotient to one on the other.</p><p>The sixth to eighth graph show the normalized chi<sup>2</sup> measurefor an antecedent support of 0.2, 0.3, and 0.4. The valleys are verysimilar to those for the information difference to the prior confidence,they only have slightly steeper flanks, especially for low antecedentsupport. So in practice there is no big difference between theinformation difference and the normalized chi<sup>2</sup> measure.</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><h4><a name="appear">Item Appearances</a></h4><p>My apriori program provides a simple way to restrict the rules togenerate w.r.t. the items that shall appear in them. It accepts a thirdoptional input file, in which item appearances can be given. For eachitem it can be stated whether it may appear in the body (antecedent)of a rule, in the head (consequent), or in both. A description of theformat of this additional input file, including examples, can be found<a href="#trans">here</a>. If no item appearances file is given, therule selection is not restricted. (I am grateful to the people atIntegral Solutions Ltd., who developed the well-known data mining tool<a href="http://www.spss.com/Clementine/">Clementine</a>, but are nowpart of <a href="http://www.spss.com">SPSS</a>, for requesting thepossibility to restrict item appearances.)</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3><a name="target">Other Target Types</a></h3><p>The target type, which can be selected via the option <tt>-t</tt>,is either association rules (option -tr, default), frequent item sets(option -ts), or association hyperedges (option -th).</p><!-- =============================================================== --><h4><a name="itemsets">Frequent Item Sets (option -ts)</a></h4><p>Sometimes one may not want to find association rules, but only thefrequent item sets underlying them. That is, one wants to find allitem sets with a support exceeding a certain threshold. My aprioriprogram supports this search, too: If the option -ts is given, onlythe frequent item sets are determined.</p><!-- =============================================================== --><h4><a name="hyperedges">Association Hyperedges (option -th)</a></h4><p>My apriori program can also find association hyperedges, i.e., setsof items that are strongly predictive w.r.t. each other. In this modeno rules are generated, only item sets are selected. The selectioncriterion is as follows: Given an item set with enough support (option<tt>-s</tt>), all rules are checked which can be formed using this setwith all items appearing in the rule. For example, for the item set{a b c}, the rules c &lt;- a b, b &lt;- a c, a &lt;- b c would beconsidered. The confidences of these rules are computed and averaged.If the resulting average confidence is greater than the minimalconfidence (option <tt>-c</tt>), the item set is selected. (I amgrateful to Bastien Duclaux for requesting the possibility to generateassociation hyperedges.)</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3><a name="options">Program Invocation and Options</a></h3><p>My apriori program is invoked as follows:</p><p><tt>apriori [options] infile outfile [appfile]</tt></p><p>The normal arguments are:</p><table border=0 cellpadding=0 cellspacing=0><tr><td>infile</td><td width=10></td>    <td>file to read transactions from</td></tr><tr><td>outfile</td><td></td>    <td>file to write association rules / hyperedges to</td></tr><tr><td>appfile</td><td></td>    <td>file stating item appearances (optional)</td></tr></table><p>The possible options are:</p><table border=0 cellpadding=0 cellspacing=0><tr><td><tt>-t#</tt></td><td width=10></td>    <td>target type        (s: item sets, r: rules (default), h: hyperedges)</td></tr><tr><td><tt>-m#</tt></td><td></td>    <td>minimal number of items per set/rule/hyperedge        (default: 1)</td></tr><tr><td><tt>-n#</tt></td><td></td>    <td>maximal number of items per set/rule/hyperedge        (default: 5)</td></tr><tr><td><tt>-s#</tt></td><td></td>    <td>minimal support    of a     set/rule/hyperedge        (default: 10%)</td></tr><tr><td><tt>-c#</tt></td><td></td>    <td>minimal confidence of a         rule/hyperedge        (default: 80%)</td></tr><tr><td><tt>-o</tt></td><td></td>    <td>use original definition of the support of a rule        (body & head)</td></tr><tr><td><tt>-x</tt></td><td></td>    <td>extended support output (print both rule support types)        </td></tr><tr><td><tt>-a</tt></td><td></td>    <td>print absolute support (number of transactions)</td></tr><tr><td><tt>-p</tt></td><td></td>    <td>print support/confidence with high precision</td></tr><tr><td><tt>-e#</tt></td><td></td>    <td>additional rule evaluation measure (default: none)</td></tr><tr><td><tt>-!</tt></td><td></td>    <td>print a list of additional rule evaluation measures</td></tr><tr><td><tt>-d#</tt></td><td></td>    <td>minimal value of additional evaluation measure        (default: 10%)</td></tr><tr><td><tt>-v</tt></td><td></td>    <td>print value of additional rule evaluation measure</td></tr><tr><td><tt>-g</tt></td><td></td>    <td>write output in scanable form        (quote certain characters)</td></tr><tr><td><tt>-l</tt></td><td></td>    <td>do not load transactions into memory        (work on input file)</td></tr><tr><td><tt>-q#</tt></td><td></td>    <td>sort items w.r.t. their frequency (1: ascending (default),        -1: descending, 0: do not sort)</td></tr><tr><td><tt>-z</tt></td><td></td>    <td>minimize memory usage (default: maximize speed)</td></tr><tr><td><tt>-i#</tt></td><td></td>    <td>ignore records starting with characters in the given        string</td></tr><tr><td><tt>-b/f/r#</tt></td><td></td>    <td>blank characters, field and record separators        (default: "<tt> \t\r</tt>", "<tt> \t</tt>", "<tt>\n</tt>")        </td></tr></table><p>(<tt>#</tt> always means a number, a letter, or a string that   specifies the parameter of the option.)</p><p>Note that the effect of the option <tt>-z</tt> can depend heavily   on how the items are sorted (option <tt>-q</tt>). Highest savings   in memory usually result if items are sorted with descending   frequency (<tt>-q-1</tt>). However, this often worsens the   processing time considerably.</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3><a name="input">Input Format</a></h3><h4><a name="transin">Format of the Transactions File</a></h4><p>A text file structured by field and record separators and blanks.Record separators, not surprisingly, separate records, usually lines,field separators fields (or columns), usually words. Blanks are usedto fill fields (columns), e.g. to align them. In the transactionsfile each record must contain one transaction, i.e. a list of itemidentifiers, which are separated by field separators. An empty recordis interpreted as an empty transaction.</p><p>Examples can be found in the directory <tt>apriori/ex</tt> in thesource package. Refer to the file <tt>apriori/ex/readme</tt>, whichexplains how to process the different example files in the directory<tt>apriori/ex</tt> in the source package.</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><h4><a name="appearin">Format of the Item Appearances File</a></h4><p>A text file structured by field and record separators and blanks.(Note: For this file the same field and record separators and blanksare used as for the transactions file.)</p><p>The first record, which must have one field, contains the default

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲色欲色欲www| 日韩欧美国产高清| 欧美少妇一区二区| 亚洲一区免费视频| 欧美在线看片a免费观看| 国产精品国产三级国产aⅴ无密码| 美洲天堂一区二卡三卡四卡视频| 日韩一级免费观看| 国内外成人在线| 国产精品视频一二三区| 日本电影亚洲天堂一区| 日韩精品电影在线| www久久精品| gogo大胆日本视频一区| 夜夜亚洲天天久久| 4438成人网| 国产高清亚洲一区| 亚洲精品菠萝久久久久久久| 欧美精品乱码久久久久久按摩| 九色综合国产一区二区三区| 中文成人av在线| 欧美影视一区二区三区| 麻豆国产欧美一区二区三区| 国产欧美一区在线| 欧美在线啊v一区| 久久国产福利国产秒拍| 国产午夜精品久久| 欧美午夜理伦三级在线观看| 免费欧美在线视频| 国产精品毛片久久久久久| 色婷婷综合久久| 美女任你摸久久| 亚洲欧美在线视频观看| 久久日韩精品一区二区五区| 免费观看在线色综合| 国产欧美一区二区精品忘忧草 | 久久久久国产一区二区三区四区| 亚洲日韩欧美一区二区在线| 这里只有精品电影| 粉嫩欧美一区二区三区高清影视| 一区二区三区中文免费| 精品人伦一区二区色婷婷| 99精品欧美一区二区三区综合在线| 丝袜亚洲精品中文字幕一区| 日本一区二区三级电影在线观看| 欧美日韩一区二区三区免费看| 国精产品一区一区三区mba桃花 | 九九热在线视频观看这里只有精品| 国产精品免费免费| 911国产精品| av一区二区三区黑人| 美国十次综合导航| 亚洲免费在线观看| 久久久久久影视| 欧美久久久影院| av激情亚洲男人天堂| 久久国产婷婷国产香蕉| 一区二区三区四区视频精品免费| 久久精品一区二区三区不卡| 欧美另类一区二区三区| 97精品国产97久久久久久久久久久久| 国产激情视频一区二区在线观看| 欧美三级视频在线播放| 国产传媒欧美日韩成人| 视频一区二区中文字幕| 中文字幕一区日韩精品欧美| 精品国产亚洲在线| 国内精品伊人久久久久av一坑| 日韩一卡二卡三卡四卡| 538prom精品视频线放| 亚洲一区二区黄色| 91视频一区二区| 国产一区二区在线观看视频| 国产精品三级久久久久三级| 欧美精品一区二区三区一线天视频 | 一区二区三区在线视频观看| 2022国产精品视频| 91精品国产黑色紧身裤美女| 在线精品视频免费播放| 不卡视频一二三| 精品一区二区在线观看| 丝瓜av网站精品一区二区| 亚洲精品国产成人久久av盗摄 | 1024成人网| 国产色婷婷亚洲99精品小说| 日韩精品一区二区三区四区| 欧美影视一区在线| 粉嫩一区二区三区在线看| 奇米777欧美一区二区| 亚洲日本一区二区| 中文字幕国产精品一区二区| 精品国产乱码久久久久久老虎| 欧美欧美午夜aⅴ在线观看| 色婷婷av一区二区三区gif| av亚洲精华国产精华精华| 国产激情一区二区三区桃花岛亚洲| 久久99精品一区二区三区| 琪琪久久久久日韩精品| 日韩va欧美va亚洲va久久| 性做久久久久久免费观看| 亚洲一级片在线观看| 一区二区三区精品视频| 亚洲乱码国产乱码精品精的特点| 亚洲欧洲色图综合| 中文字幕一区二区三区在线播放| 国产精品久久毛片av大全日韩| 国产视频一区二区在线观看| 国产丝袜欧美中文另类| 日本午夜一区二区| 日本一区二区三级电影在线观看| 久久久精品综合| 久久久www成人免费无遮挡大片| 久久先锋资源网| 国产日产欧美精品一区二区三区| 久久久久久久久久久黄色| 国产视频一区在线观看| 久久伊人中文字幕| 国产日韩欧美a| 国产精品久久久久久久久久免费看 | 欧美性xxxxxx少妇| 欧美视频三区在线播放| 欧美日本在线一区| 91精品国产91久久久久久一区二区 | 国产a视频精品免费观看| 丁香婷婷综合激情五月色| 不卡一卡二卡三乱码免费网站 | 国产成人亚洲综合a∨猫咪| 国产69精品久久久久毛片| 成人国产精品免费观看视频| 99久久精品国产一区二区三区| www.亚洲在线| 91精彩视频在线观看| 欧美久久久久中文字幕| 91精品一区二区三区在线观看| 欧美一区二区二区| 久久婷婷久久一区二区三区| 久久精品人人爽人人爽| 国产中文一区二区三区| 亚洲欧洲成人精品av97| 亚洲午夜在线电影| 蜜臀精品久久久久久蜜臀 | 五月婷婷欧美视频| 免费亚洲电影在线| 国产成人一级电影| 在线视频你懂得一区二区三区| 欧美高清视频一二三区 | 一区二区三区四区不卡在线 | 欧美专区日韩专区| 欧美一级精品大片| 国产日产欧美精品一区二区三区| 亚洲男人电影天堂| 婷婷开心久久网| 经典三级一区二区| 91在线精品一区二区| 欧美日韩三级视频| 精品福利在线导航| 亚洲日本va午夜在线电影| 日韩av一区二区三区四区| 国产精品亚洲成人| 欧美亚洲国产怡红院影院| 欧美mv日韩mv亚洲| 亚洲欧洲在线观看av| 免费日韩伦理电影| a亚洲天堂av| 欧美一区二区美女| 亚洲欧洲国产专区| 美女脱光内衣内裤视频久久网站 | 日本成人在线看| 成人晚上爱看视频| 欧美精品1区2区| av不卡在线观看| 国产成人免费视频网站 | 国产在线视频精品一区| av在线一区二区| 日韩一区二区免费在线观看| 国产精品女主播av| 亚洲成人av资源| 粉嫩av一区二区三区| 欧美美女一区二区| 亚洲欧美一区二区在线观看| 蜜臀av性久久久久蜜臀aⅴ四虎| 成人性视频网站| 日韩视频免费直播| 亚洲精选一二三| 国产激情视频一区二区在线观看 | 波多野结衣欧美| 欧美一卡二卡三卡四卡| 国产精品久久久久一区| 免费一级欧美片在线观看| 91农村精品一区二区在线| 欧美精品一区二| 午夜精品福利视频网站| 99久久免费精品| 久久久久久久久久久久电影| 日韩成人免费看| 日本韩国欧美在线| 欧美激情一区二区三区| 麻豆国产一区二区| 欧美无砖专区一中文字| 亚洲欧洲性图库|