亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? nbtheory.cpp

?? 此文件是實(shí)現(xiàn)加解密算法的函數(shù)庫
?? CPP
?? 第 1 頁 / 共 2 頁
字號(hào):
// nbtheory.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "nbtheory.h"
#include "modarith.h"
#include "algparam.h"

#include <math.h>
#include <vector>

NAMESPACE_BEGIN(CryptoPP)

const unsigned int maxPrimeTableSize = 3511;	// last prime 32719
const word lastSmallPrime = 32719;
unsigned int primeTableSize=552;

word primeTable[maxPrimeTableSize] =
	{2, 3, 5, 7, 11, 13, 17, 19,
	23, 29, 31, 37, 41, 43, 47, 53,
	59, 61, 67, 71, 73, 79, 83, 89,
	97, 101, 103, 107, 109, 113, 127, 131,
	137, 139, 149, 151, 157, 163, 167, 173,
	179, 181, 191, 193, 197, 199, 211, 223,
	227, 229, 233, 239, 241, 251, 257, 263,
	269, 271, 277, 281, 283, 293, 307, 311,
	313, 317, 331, 337, 347, 349, 353, 359,
	367, 373, 379, 383, 389, 397, 401, 409,
	419, 421, 431, 433, 439, 443, 449, 457,
	461, 463, 467, 479, 487, 491, 499, 503,
	509, 521, 523, 541, 547, 557, 563, 569,
	571, 577, 587, 593, 599, 601, 607, 613,
	617, 619, 631, 641, 643, 647, 653, 659,
	661, 673, 677, 683, 691, 701, 709, 719,
	727, 733, 739, 743, 751, 757, 761, 769,
	773, 787, 797, 809, 811, 821, 823, 827,
	829, 839, 853, 857, 859, 863, 877, 881,
	883, 887, 907, 911, 919, 929, 937, 941,
	947, 953, 967, 971, 977, 983, 991, 997,
	1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049,
	1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
	1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
	1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,
	1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
	1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
	1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,
	1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459,
	1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
	1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,
	1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619,
	1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
	1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747,
	1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,
	1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
	1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949,
	1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003,
	2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,
	2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129,
	2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203,
	2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
	2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311,
	2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377,
	2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
	2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503,
	2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579,
	2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
	2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,
	2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741,
	2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,
	2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861,
	2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939,
	2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011,
	3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,
	3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,
	3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
	3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301,
	3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347,
	3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,
	3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491,
	3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541,
	3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
	3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671,
	3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727,
	3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
	3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863,
	3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923,
	3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003};

void BuildPrimeTable()
{
	unsigned int p=primeTable[primeTableSize-1];
	for (unsigned int i=primeTableSize; i<maxPrimeTableSize; i++)
	{
		int j;
		do
		{
			p+=2;
			for (j=1; j<54; j++)
				if (p%primeTable[j] == 0)
					break;
		} while (j!=54);
		primeTable[i] = p;
	}
	primeTableSize = maxPrimeTableSize;
	assert(primeTable[primeTableSize-1] == lastSmallPrime);
}

bool IsSmallPrime(const Integer &p)
{
	BuildPrimeTable();

	if (p.IsPositive() && p <= primeTable[primeTableSize-1])
		return std::binary_search(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
	else
		return false;
}

bool TrialDivision(const Integer &p, unsigned bound)
{
	assert(primeTable[primeTableSize-1] >= bound);

	unsigned int i;
	for (i = 0; primeTable[i]<bound; i++)
		if ((p % primeTable[i]) == 0)
			return true;

	if (bound == primeTable[i])
		return (p % bound == 0);
	else
		return false;
}

bool SmallDivisorsTest(const Integer &p)
{
	BuildPrimeTable();
	return !TrialDivision(p, primeTable[primeTableSize-1]);
}

bool IsFermatProbablePrime(const Integer &n, const Integer &b)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3 && b>1 && b<n-1);
	return a_exp_b_mod_c(b, n-1, n)==1;
}

bool IsStrongProbablePrime(const Integer &n, const Integer &b)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3 && b>1 && b<n-1);

	if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
		return false;

	Integer nminus1 = (n-1);
	unsigned int a;

	// calculate a = largest power of 2 that divides (n-1)
	for (a=0; ; a++)
		if (nminus1.GetBit(a))
			break;
	Integer m = nminus1>>a;

	Integer z = a_exp_b_mod_c(b, m, n);
	if (z==1 || z==nminus1)
		return true;
	for (unsigned j=1; j<a; j++)
	{
		z = z.Squared()%n;
		if (z==nminus1)
			return true;
		if (z==1)
			return false;
	}
	return false;
}

bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3);

	Integer b;
	for (unsigned int i=0; i<rounds; i++)
	{
		b.Randomize(rng, 2, n-2);
		if (!IsStrongProbablePrime(n, b))
			return false;
	}
	return true;
}

bool IsLucasProbablePrime(const Integer &n)
{
	if (n <= 1)
		return false;

	if (n.IsEven())
		return n==2;

	assert(n>2);

	Integer b=3;
	unsigned int i=0;
	int j;

	while ((j=Jacobi(b.Squared()-4, n)) == 1)
	{
		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
			return false;
		++b; ++b;
	}

	if (j==0) 
		return false;
	else
		return Lucas(n+1, b, n)==2;
}

bool IsStrongLucasProbablePrime(const Integer &n)
{
	if (n <= 1)
		return false;

	if (n.IsEven())
		return n==2;

	assert(n>2);

	Integer b=3;
	unsigned int i=0;
	int j;

	while ((j=Jacobi(b.Squared()-4, n)) == 1)
	{
		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
			return false;
		++b; ++b;
	}

	if (j==0) 
		return false;

	Integer n1 = n+1;
	unsigned int a;

	// calculate a = largest power of 2 that divides n1
	for (a=0; ; a++)
		if (n1.GetBit(a))
			break;
	Integer m = n1>>a;

	Integer z = Lucas(m, b, n);
	if (z==2 || z==n-2)
		return true;
	for (i=1; i<a; i++)
	{
		z = (z.Squared()-2)%n;
		if (z==n-2)
			return true;
		if (z==2)
			return false;
	}
	return false;
}

bool IsPrime(const Integer &p)
{
	static const Integer lastSmallPrimeSquared = Integer(lastSmallPrime).Squared();

	if (p <= lastSmallPrime)
		return IsSmallPrime(p);
	else if (p <= lastSmallPrimeSquared)
		return SmallDivisorsTest(p);
	else
		return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
}

bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
{
	bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
	if (level >= 1)
		pass = pass && RabinMillerTest(rng, p, 10);
	return pass;
}

unsigned int PrimeSearchInterval(const Integer &max)
{
	return max.BitCount();
}

static inline bool FastProbablePrimeTest(const Integer &n)
{
	return IsStrongProbablePrime(n,2);
}

AlgorithmParameters<AlgorithmParameters<AlgorithmParameters<NullNameValuePairs, Integer::RandomNumberType>, Integer>, Integer>
	MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
{
	if (productBitLength < 16)
		throw InvalidArgument("invalid bit length");

	Integer minP, maxP;

	if (productBitLength%2==0)
	{
		minP = Integer(182) << (productBitLength/2-8);
		maxP = Integer::Power2(productBitLength/2)-1;
	}
	else
	{
		minP = Integer::Power2((productBitLength-1)/2);
		maxP = Integer(181) << ((productBitLength+1)/2-8);
	}

	return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
}

class PrimeSieve
{
public:
	// delta == 1 or -1 means double sieve with p = 2*q + delta
	PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
	bool NextCandidate(Integer &c);

	void DoSieve();
	static void SieveSingle(std::vector<bool> &sieve, word p, const Integer &first, const Integer &step, word stepInv);

	Integer m_first, m_last, m_step;
	signed int m_delta;
	word m_next;
	std::vector<bool> m_sieve;
};

PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
	: m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
{
	DoSieve();
}

bool PrimeSieve::NextCandidate(Integer &c)
{
	m_next = std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin();
	if (m_next == m_sieve.size())
	{
		m_first += m_sieve.size()*m_step;
		if (m_first > m_last)
			return false;
		else
		{
			m_next = 0;
			DoSieve();
			return NextCandidate(c);
		}
	}
	else
	{
		c = m_first + m_next*m_step;
		++m_next;
		return true;
	}
}

void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word p, const Integer &first, const Integer &step, word stepInv)
{
	if (stepInv)
	{
		unsigned int sieveSize = sieve.size();
		word j = word((dword(p-(first%p))*stepInv) % p);
		// if the first multiple of p is p, skip it
		if (first.WordCount() <= 1 && first + step*j == p)
			j += p;
		for (; j < sieveSize; j += p)
			sieve[j] = true;
	}
}

void PrimeSieve::DoSieve()
{
	BuildPrimeTable();

	const unsigned int maxSieveSize = 32768;
	unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();

	m_sieve.clear();
	m_sieve.resize(sieveSize, false);

	if (m_delta == 0)
	{
		for (unsigned int i = 0; i < primeTableSize; ++i)
			SieveSingle(m_sieve, primeTable[i], m_first, m_step, m_step.InverseMod(primeTable[i]));
	}
	else
	{
		assert(m_step%2==0);
		Integer qFirst = (m_first-m_delta) >> 1;
		Integer halfStep = m_step >> 1;
		for (unsigned int i = 0; i < primeTableSize; ++i)
		{
			word p = primeTable[i];
			word stepInv = m_step.InverseMod(p);
			SieveSingle(m_sieve, p, m_first, m_step, stepInv);

			word halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
			SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
		}
	}
}

bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
{
	assert(!equiv.IsNegative() && equiv < mod);

	Integer gcd = GCD(equiv, mod);
	if (gcd != Integer::One())
	{
		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
		if (p <= gcd && gcd <= max && IsPrime(gcd))
		{
			p = gcd;
			return true;
		}
		else
			return false;
	}

	BuildPrimeTable();

	if (p <= primeTable[primeTableSize-1])
	{
		word *pItr;

		--p;
		if (p.IsPositive())
			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
		else
			pItr = primeTable;

		while (pItr < primeTable+primeTableSize && *pItr%mod != equiv)
			++pItr;

		if (pItr < primeTable+primeTableSize)
		{
			p = *pItr;
			return p <= max;
		}

		p = primeTable[primeTableSize-1]+1;
	}

	assert(p > primeTable[primeTableSize-1]);

	if (mod.IsOdd())
		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);

	p += (equiv-p)%mod;

	if (p>max)
		return false;

	PrimeSieve sieve(p, max, mod);

	while (sieve.NextCandidate(p))
	{
		if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
			return true;
	}

	return false;
}

// the following two functions are based on code and comments provided by Preda Mihailescu
static bool ProvePrime(const Integer &p, const Integer &q)
{
	assert(p < q*q*q);
	assert(p % q == 1);

// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
// or be prime. The next two lines build the discriminant of a quadratic equation
// which holds iff p is built up of two factors (excercise ... )

	Integer r = (p-1)/q;
	if (((r%q).Squared()-4*(r/q)).IsSquare())
		return false;

	assert(primeTableSize >= 50);
	for (int i=0; i<50; i++) 
	{
		Integer b = a_exp_b_mod_c(primeTable[i], r, p);
		if (b != 1) 
			return a_exp_b_mod_c(b, q, p) == 1;
	}
	return false;
}

Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
{
	Integer p;
	Integer minP = Integer::Power2(pbits-1);
	Integer maxP = Integer::Power2(pbits) - 1;

	if (maxP <= Integer(lastSmallPrime).Squared())
	{
		// Randomize() will generate a prime provable by trial division
		p.Randomize(rng, minP, maxP, Integer::PRIME);
		return p;
	}

	unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
	Integer q = MihailescuProvablePrime(rng, qbits);
	Integer q2 = q<<1;

	while (true)
	{
		// this initializes the sieve to search in the arithmetic
		// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
		// with q the recursively generated prime above. We will be able
		// to use Lucas tets for proving primality. A trick of Quisquater
		// allows taking q > cubic_root(p) rather then square_root: this
		// decreases the recursion.

		p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
		PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);

		while (sieve.NextCandidate(p))
		{
			if (FastProbablePrimeTest(p) && ProvePrime(p, q))
				return p;
		}
	}

	// not reached
	return p;
}

Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
	const unsigned smallPrimeBound = 29, c_opt=10;
	Integer p;

	BuildPrimeTable();
	if (bits < smallPrimeBound)
	{
		do
			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
		while (TrialDivision(p, 1 << ((bits+1)/2)));
	}
	else
	{
		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
		double relativeSize;
		do
			relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
		while (bits * relativeSize >= bits - margin);

		Integer a,b;
		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
		Integer I = Integer::Power2(bits-2)/q;
		Integer I2 = I << 1;

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人高清av在线| 91麻豆免费看| 亚洲欧美另类小说视频| 51精品视频一区二区三区| 国产91丝袜在线播放0| 亚洲va韩国va欧美va| 国产精品午夜春色av| 6080亚洲精品一区二区| av激情亚洲男人天堂| 久久草av在线| 亚洲123区在线观看| 成人免费在线播放视频| 精品成人一区二区三区| 欧美理论在线播放| 91尤物视频在线观看| 国产久卡久卡久卡久卡视频精品| 婷婷综合另类小说色区| 中文字幕一区二区三区精华液| 日韩欧美国产一区二区三区 | 欧美日韩综合一区| 国产成人午夜高潮毛片| 日韩福利电影在线观看| 一区二区三区在线视频观看58 | 日韩国产欧美视频| 亚洲美女电影在线| 国产精品天干天干在线综合| 久久日一线二线三线suv| 91.xcao| 色呦呦国产精品| 成人伦理片在线| 国产成人免费在线观看| 国产乱人伦偷精品视频免下载 | 国产九色sp调教91| 美女国产一区二区| 日本aⅴ免费视频一区二区三区| 亚洲综合色区另类av| 亚洲美女屁股眼交3| 中文字幕一区二区三| 国产精品久久国产精麻豆99网站 | 亚洲欧洲一区二区三区| 欧美国产丝袜视频| 国产欧美一区二区在线观看| 久久久久久久国产精品影院| 久久综合九色综合久久久精品综合| 日韩欧美成人一区| www国产亚洲精品久久麻豆| 精品欧美乱码久久久久久1区2区| 日韩视频免费直播| 精品久久国产老人久久综合| 精品久久国产97色综合| 久久精品视频一区二区三区| 国产日产精品一区| 中文字幕日韩av资源站| 亚洲猫色日本管| 亚洲国产另类av| 奇米888四色在线精品| 蜜臀av在线播放一区二区三区| 久草这里只有精品视频| 国产福利91精品一区| 北条麻妃国产九九精品视频| 99久久精品国产观看| 欧美自拍偷拍午夜视频| 欧美精品精品一区| 精品国精品自拍自在线| 国产精品美女久久久久aⅴ国产馆| 国产精品午夜电影| 一区二区免费看| 免费观看30秒视频久久| 国产精品伊人色| 一本久久综合亚洲鲁鲁五月天 | 欧美日韩一级片网站| 日韩视频中午一区| 欧美国产日韩精品免费观看| 亚洲色图视频网| 国产成人综合自拍| 91原创在线视频| 91精品婷婷国产综合久久竹菊| 国产亚洲一区字幕| 亚洲狠狠丁香婷婷综合久久久| 日韩在线观看一区二区| 国产不卡视频在线观看| 色哟哟一区二区三区| 欧美电影免费观看高清完整版| 国产精品每日更新| 香蕉久久一区二区不卡无毒影院| 韩国成人福利片在线播放| 97se亚洲国产综合在线| 日韩手机在线导航| 亚洲女同女同女同女同女同69| 免费观看91视频大全| 色综合久久中文字幕| 日韩一级片网址| 亚洲欧美日韩人成在线播放| 免费成人av在线| 91在线porny国产在线看| 精品国产青草久久久久福利| 亚洲精品视频在线看| 国产一区二区精品久久| 欧美日高清视频| 国产精品久久久久影院色老大| 视频一区二区不卡| 99久久综合国产精品| 精品国产免费一区二区三区香蕉| 亚洲激情男女视频| 国产v综合v亚洲欧| 欧美电影免费观看完整版| 亚洲综合激情另类小说区| 国产a级毛片一区| 91精品国产欧美一区二区18| 亚洲男人的天堂在线aⅴ视频| 激情偷乱视频一区二区三区| 欧美在线视频全部完| 亚洲国产经典视频| 国产在线精品视频| 日韩欧美一区二区视频| 亚洲bt欧美bt精品777| 色综合欧美在线视频区| 国产精品国产a| 国产精品1区2区3区| 精品国产人成亚洲区| 麻豆一区二区三| 欧美另类videos死尸| 亚洲一区二区精品久久av| 91麻豆精东视频| 国产精品美女一区二区三区| 国产精品香蕉一区二区三区| 精品国产一区二区三区久久影院| 日韩国产精品久久久| 欧美日韩国产电影| 天堂在线一区二区| 欧美日本在线观看| 香蕉av福利精品导航| 欧美午夜影院一区| 亚洲大片在线观看| 在线一区二区观看| 亚洲在线视频网站| 在线观看成人免费视频| 亚洲一区欧美一区| 欧美在线观看你懂的| 亚洲一区二区三区在线看| 欧美综合色免费| 亚洲国产成人va在线观看天堂| 色播五月激情综合网| 一区二区免费在线播放| 欧美日韩国产区一| 日韩精品五月天| 日韩精品一区二区三区视频在线观看 | 亚洲一区二区三区中文字幕在线| 欧美在线观看18| 婷婷成人激情在线网| 日韩网站在线看片你懂的| 国产在线一区二区综合免费视频| 欧美精品一区在线观看| 国产99久久久国产精品免费看| 欧美国产1区2区| 色欧美日韩亚洲| 日一区二区三区| 久久综合久久久久88| 9久草视频在线视频精品| 亚洲一区在线电影| 日韩欧美在线网站| 国产成人夜色高潮福利影视| **欧美大码日韩| 欧美日产在线观看| 国产精品资源在线看| 亚洲天堂精品视频| 欧美精三区欧美精三区| 国产精品综合在线视频| 亚洲欧美一区二区不卡| 91精品一区二区三区久久久久久| 狠狠色综合日日| 亚洲欧美精品午睡沙发| 欧美一级理论性理论a| 国产suv精品一区二区883| 一区二区成人在线| 精品乱人伦小说| 91视频免费看| 激情小说亚洲一区| 亚洲色图.com| 欧美成人激情免费网| 99久久国产综合色|国产精品| 午夜成人在线视频| 国产人成亚洲第一网站在线播放| 91官网在线观看| 国产呦萝稀缺另类资源| 亚洲一区二区五区| 国产三级精品视频| 欧美男同性恋视频网站| 成人av电影在线网| 日韩中文字幕区一区有砖一区| 亚洲国产精品av| 日韩欧美国产1| 欧美在线观看一区| 国产69精品久久99不卡| 日本不卡高清视频| 亚洲天堂成人网| 国产亚洲精品超碰| 欧美一三区三区四区免费在线看 | 国产精品99久久久久久宅男| 亚洲电影激情视频网站|