亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? nbtheory.cpp

?? 此文件是實現加解密算法的函數庫
?? CPP
?? 第 1 頁 / 共 2 頁
字號:
		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
		bool success = false;
		while (!success)
		{
			p.Randomize(rng, I, I2, Integer::ANY);
			p *= q; p <<= 1; ++p;
			if (!TrialDivision(p, trialDivisorBound))
			{
				a.Randomize(rng, 2, p-1, Integer::ANY);
				b = a_exp_b_mod_c(a, (p-1)/q, p);
				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
			}
		}
	}
	return p;
}

Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
{
	// isn't operator overloading great?
	return p * (u * (xq-xp) % q) + xp;
}

Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q)
{
	return CRT(xp, p, xq, q, EuclideanMultiplicativeInverse(p, q));
}

Integer ModularSquareRoot(const Integer &a, const Integer &p)
{
	if (p%4 == 3)
		return a_exp_b_mod_c(a, (p+1)/4, p);

	Integer q=p-1;
	unsigned int r=0;
	while (q.IsEven())
	{
		r++;
		q >>= 1;
	}

	Integer n=2;
	while (Jacobi(n, p) != -1)
		++n;

	Integer y = a_exp_b_mod_c(n, q, p);
	Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
	Integer b = (x.Squared()%p)*a%p;
	x = a*x%p;
	Integer tempb, t;

	while (b != 1)
	{
		unsigned m=0;
		tempb = b;
		do
		{
			m++;
			b = b.Squared()%p;
			if (m==r)
				return Integer::Zero();
		}
		while (b != 1);

		t = y;
		for (unsigned i=0; i<r-m-1; i++)
			t = t.Squared()%p;
		y = t.Squared()%p;
		r = m;
		x = x*t%p;
		b = tempb*y%p;
	}

	assert(x.Squared()%p == a);
	return x;
}

bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
{
	Integer D = (b.Squared() - 4*a*c) % p;
	switch (Jacobi(D, p))
	{
	default:
		assert(false);	// not reached
		return false;
	case -1:
		return false;
	case 0:
		r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
		assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
		return true;
	case 1:
		Integer s = ModularSquareRoot(D, p);
		Integer t = (a+a).InverseMod(p);
		r1 = (s-b)*t % p;
		r2 = (-s-b)*t % p;
		assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
		assert(((r2.Squared()*a + r2*b + c) % p).IsZero());
		return true;
	}
}

Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
					const Integer &p, const Integer &q, const Integer &u)
{
	Integer p2 = ModularExponentiation((a % p), dp, p);
	Integer q2 = ModularExponentiation((a % q), dq, q);
	return CRT(p2, p, q2, q, u);
}

Integer ModularRoot(const Integer &a, const Integer &e,
					const Integer &p, const Integer &q)
{
	Integer dp = EuclideanMultiplicativeInverse(e, p-1);
	Integer dq = EuclideanMultiplicativeInverse(e, q-1);
	Integer u = EuclideanMultiplicativeInverse(p, q);
	assert(!!dp && !!dq && !!u);
	return ModularRoot(a, dp, dq, p, q, u);
}

/*
Integer GCDI(const Integer &x, const Integer &y)
{
	Integer a=x, b=y;
	unsigned k=0;

	assert(!!a && !!b);

	while (a[0]==0 && b[0]==0)
	{
		a >>= 1;
		b >>= 1;
		k++;
	}

	while (a[0]==0)
		a >>= 1;

	while (b[0]==0)
		b >>= 1;

	while (1)
	{
		switch (a.Compare(b))
		{
			case -1:
				b -= a;
				while (b[0]==0)
					b >>= 1;
				break;

			case 0:
				return (a <<= k);

			case 1:
				a -= b;
				while (a[0]==0)
					a >>= 1;
				break;

			default:
				assert(false);
		}
	}
}

Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
{
	assert(b.Positive());

	if (a.Negative())
		return EuclideanMultiplicativeInverse(a%b, b);

	if (b[0]==0)
	{
		if (!b || a[0]==0)
			return Integer::Zero();       // no inverse
		if (a==1)
			return 1;
		Integer u = EuclideanMultiplicativeInverse(b, a);
		if (!u)
			return Integer::Zero();       // no inverse
		else
			return (b*(a-u)+1)/a;
	}

	Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;

	if (a[0])
	{
		t1 = Integer::Zero();
		t3 = -b;
	}
	else
	{
		t1 = b2;
		t3 = a>>1;
	}

	while (!!t3)
	{
		while (t3[0]==0)
		{
			t3 >>= 1;
			if (t1[0]==0)
				t1 >>= 1;
			else
			{
				t1 >>= 1;
				t1 += b2;
			}
		}
		if (t3.Positive())
		{
			u = t1;
			d = t3;
		}
		else
		{
			v1 = b-t1;
			v3 = -t3;
		}
		t1 = u-v1;
		t3 = d-v3;
		if (t1.Negative())
			t1 += b;
	}
	if (d==1)
		return u;
	else
		return Integer::Zero();   // no inverse
}
*/

int Jacobi(const Integer &aIn, const Integer &bIn)
{
	assert(bIn.IsOdd());

	Integer b = bIn, a = aIn%bIn;
	int result = 1;

	while (!!a)
	{
		unsigned i=0;
		while (a.GetBit(i)==0)
			i++;
		a>>=i;

		if (i%2==1 && (b%8==3 || b%8==5))
			result = -result;

		if (a%4==3 && b%4==3)
			result = -result;

		std::swap(a, b);
		a %= b;
	}

	return (b==1) ? result : 0;
}

Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
{
	unsigned i = e.BitCount();
	if (i==0)
		return Integer::Two();

	MontgomeryRepresentation m(n);
	Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
	Integer v=p, v1=m.Subtract(m.Square(p), two);

	i--;
	while (i--)
	{
		if (e.GetBit(i))
		{
			// v = (v*v1 - p) % m;
			v = m.Subtract(m.Multiply(v,v1), p);
			// v1 = (v1*v1 - 2) % m;
			v1 = m.Subtract(m.Square(v1), two);
		}
		else
		{
			// v1 = (v*v1 - p) % m;
			v1 = m.Subtract(m.Multiply(v,v1), p);
			// v = (v*v - 2) % m;
			v = m.Subtract(m.Square(v), two);
		}
	}
	return m.ConvertOut(v);
}

// This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
// The total number of multiplies and squares used is less than the binary
// algorithm (see above).  Unfortunately I can't get it to run as fast as
// the binary algorithm because of the extra overhead.
/*
Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
{
	if (!n)
		return 2;

#define f(A, B, C)	m.Subtract(m.Multiply(A, B), C)
#define X2(A) m.Subtract(m.Square(A), two)
#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))

	MontgomeryRepresentation m(modulus);
	Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
	Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;

	while (d!=1)
	{
		p = d;
		unsigned int b = WORD_BITS * p.WordCount();
		Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
		r = (p*alpha)>>b;
		e = d-r;
		B = A;
		C = two;
		d = r;

		while (d!=e)
		{
			if (d<e)
			{
				swap(d, e);
				swap(A, B);
			}

			unsigned int dm2 = d[0], em2 = e[0];
			unsigned int dm3 = d%3, em3 = e%3;

//			if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
			if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
			{
				// #1
//				t = (d+d-e)/3;
//				t = d; t += d; t -= e; t /= 3;
//				e = (e+e-d)/3;
//				e += e; e -= d; e /= 3;
//				d = t;

//				t = (d+e)/3
				t = d; t += e; t /= 3;
				e -= t;
				d -= t;

				T = f(A, B, C);
				U = f(T, A, B);
				B = f(T, B, A);
				A = U;
				continue;
			}

//			if (dm6 == em6 && d <= e + (e>>2))
			if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
			{
				// #2
//				d = (d-e)>>1;
				d -= e; d >>= 1;
				B = f(A, B, C);
				A = X2(A);
				continue;
			}

//			if (d <= (e<<2))
			if (d <= (t = e, t <<= 2))
			{
				// #3
				d -= e;
				C = f(A, B, C);
				swap(B, C);
				continue;
			}

			if (dm2 == em2)
			{
				// #4
//				d = (d-e)>>1;
				d -= e; d >>= 1;
				B = f(A, B, C);
				A = X2(A);
				continue;
			}

			if (dm2 == 0)
			{
				// #5
				d >>= 1;
				C = f(A, C, B);
				A = X2(A);
				continue;
			}

			if (dm3 == 0)
			{
				// #6
//				d = d/3 - e;
				d /= 3; d -= e;
				T = X2(A);
				C = f(T, f(A, B, C), C);
				swap(B, C);
				A = f(T, A, A);
				continue;
			}

			if (dm3+em3==0 || dm3+em3==3)
			{
				// #7
//				d = (d-e-e)/3;
				d -= e; d -= e; d /= 3;
				T = f(A, B, C);
				B = f(T, A, B);
				A = X3(A);
				continue;
			}

			if (dm3 == em3)
			{
				// #8
//				d = (d-e)/3;
				d -= e; d /= 3;
				T = f(A, B, C);
				C = f(A, C, B);
				B = T;
				A = X3(A);
				continue;
			}

			assert(em2 == 0);
			// #9
			e >>= 1;
			C = f(C, B, A);
			B = X2(B);
		}

		A = f(A, B, C);
	}

#undef f
#undef X2
#undef X3

	return m.ConvertOut(A);
}
*/

Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
{
	Integer d = (m*m-4);
	Integer p2 = p-Jacobi(d,p);
	Integer q2 = q-Jacobi(d,q);
	return CRT(Lucas(EuclideanMultiplicativeInverse(e,p2), m, p), p, Lucas(EuclideanMultiplicativeInverse(e,q2), m, q), q, u);
}

Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q)
{
	return InverseLucas(e, m, p, q, EuclideanMultiplicativeInverse(p, q));
}

unsigned int FactoringWorkFactor(unsigned int n)
{
	// extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
	// updated to reflect the factoring of RSA-130
	if (n<5) return 0;
	else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}

unsigned int DiscreteLogWorkFactor(unsigned int n)
{
	// assuming discrete log takes about the same time as factoring
	if (n<5) return 0;
	else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}

// ********************************************************

void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
{
	// no prime exists for delta = -1, qbits = 4, and pbits = 5
	assert(qbits > 4);
	assert(pbits > qbits);

	if (qbits+1 == pbits)
	{
		Integer minP = Integer::Power2(pbits-1);
		Integer maxP = Integer::Power2(pbits) - 1;
		bool success = false;

		while (!success)
		{
			p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
			PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);

			while (sieve.NextCandidate(p))
			{
				assert(IsSmallPrime(p) || SmallDivisorsTest(p));
				q = (p-delta) >> 1;
				assert(IsSmallPrime(q) || SmallDivisorsTest(q));
				if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
				{
					success = true;
					break;
				}
			}
		}

		if (delta == 1)
		{
			// find g such that g is a quadratic residue mod p, then g has order q
			// g=4 always works, but this way we get the smallest quadratic residue (other than 1)
			for (g=2; Jacobi(g, p) != 1; ++g) {}
			// contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
			assert((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
		}
		else
		{
			assert(delta == -1);
			// find g such that g*g-4 is a quadratic non-residue, 
			// and such that g has order q
			for (g=3; ; ++g)
				if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
					break;
		}
	}
	else
	{
		Integer minQ = Integer::Power2(qbits-1);
		Integer maxQ = Integer::Power2(qbits) - 1;
		Integer minP = Integer::Power2(pbits-1);
		Integer maxP = Integer::Power2(pbits) - 1;

		do
		{
			q.Randomize(rng, minQ, maxQ, Integer::PRIME);
		} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));

		// find a random g of order q
		if (delta==1)
		{
			do
			{
				Integer h(rng, 2, p-2, Integer::ANY);
				g = a_exp_b_mod_c(h, (p-1)/q, p);
			} while (g <= 1);
			assert(a_exp_b_mod_c(g, q, p)==1);
		}
		else
		{
			assert(delta==-1);
			do
			{
				Integer h(rng, 3, p-1, Integer::ANY);
				if (Jacobi(h*h-4, p)==1)
					continue;
				g = Lucas((p+1)/q, h, p);
			} while (g <= 2);
			assert(Lucas(q, g, p) == 2);
		}
	}
}

NAMESPACE_END

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕一区二区在线观看| 国产一区二区三区av电影| 免费美女久久99| 99久久伊人精品| 日韩一区二区三区在线观看| 亚洲蜜桃精久久久久久久| 国产一区二区三区电影在线观看| 欧美午夜电影在线播放| 中文字幕国产一区| 久久99热国产| 91麻豆精品国产| 亚洲色图在线视频| 国产裸体歌舞团一区二区| 欧美日产国产精品| 亚洲卡通欧美制服中文| 大桥未久av一区二区三区中文| 日韩欧美一二三| 视频在线在亚洲| 欧美在线一区二区| 亚洲精品亚洲人成人网在线播放| 国产美女一区二区| 国产午夜精品美女毛片视频| 丝袜诱惑制服诱惑色一区在线观看 | av资源站一区| 久久美女艺术照精彩视频福利播放| 另类小说综合欧美亚洲| 日韩欧美一级精品久久| 麻豆国产精品777777在线| 91精品在线免费| 日韩电影在线一区二区三区| 在线播放欧美女士性生活| 亚洲一区自拍偷拍| 欧美亚洲免费在线一区| 亚洲成人av一区二区三区| 欧美性极品少妇| 日韩精品国产欧美| 精品国产成人系列| 国产精品一区二区三区乱码| 久久久久久久综合色一本| 国产美女av一区二区三区| 国产亚洲短视频| 成人aaaa免费全部观看| 亚洲精品成a人| 538在线一区二区精品国产| 蜜臀av在线播放一区二区三区| 精品国产乱码久久久久久免费| 国产综合色视频| 国产三区在线成人av| 99re热视频精品| 亚洲综合丝袜美腿| 51精品久久久久久久蜜臀| 狠狠色狠狠色合久久伊人| 国产欧美日韩精品一区| 色婷婷久久综合| 日韩电影在线观看一区| 久久久久久久久久电影| 色综合久久久网| 三级久久三级久久久| 国产欧美一区二区精品久导航 | 色综合久久久久久久久久久| 亚洲一区二区欧美日韩| 日韩精品一区二区三区在线观看 | 欧美三级韩国三级日本三斤| 日韩精品成人一区二区三区| 欧美精品一区二区不卡| 色综合久久久久网| 久久99国内精品| 一区二区成人在线观看| 日韩精品一区二区三区四区| jlzzjlzz亚洲女人18| 污片在线观看一区二区 | 欧美日韩免费电影| 国产精品88888| 同产精品九九九| 国产精品电影一区二区三区| 欧美一卡2卡3卡4卡| 不卡一区二区三区四区| 日本不卡高清视频| 亚洲欧洲精品一区二区三区| 欧美日韩视频在线一区二区| 成人在线一区二区三区| 天天影视涩香欲综合网| 国产精品美女久久久久久久久| 欧美一区二区精品久久911| 91视频在线观看| 国产在线麻豆精品观看| 亚洲国产成人porn| 亚洲人成在线观看一区二区| 精品美女一区二区| 欧美一区二区三区四区在线观看| 色综合天天综合网天天看片| 国产精品99久久久久久久vr| 男人的j进女人的j一区| 一区二区在线观看av| 中文字幕在线不卡| 国产欧美一区二区三区在线看蜜臀| 欧美一区二区在线播放| 欧美日韩在线电影| 一本久道久久综合中文字幕| eeuss鲁一区二区三区| 国产福利不卡视频| 国产一区二区三区四区五区入口 | 色哟哟欧美精品| 99精品国产91久久久久久| 国产成人精品影视| 国产一区二区三区黄视频 | 精品国精品自拍自在线| 欧美一区二区在线不卡| 亚洲精品免费一二三区| 欧美日韩国产综合一区二区三区| 国产91在线观看| 另类小说色综合网站| 日韩国产在线观看| 日日摸夜夜添夜夜添亚洲女人| 亚洲国产精品一区二区尤物区| 一区二区成人在线视频| 一区二区三区在线观看欧美| 亚洲色图制服丝袜| 玉足女爽爽91| 亚洲一卡二卡三卡四卡五卡| 亚洲成人av一区| 丝袜美腿亚洲色图| 久久er99热精品一区二区| 久久国产精品色婷婷| 国产精品一区专区| 成人精品电影在线观看| 成人av电影观看| 在线免费不卡电影| 欧美肥妇bbw| 久久这里只有精品首页| 日本一区二区在线不卡| 日韩一区有码在线| 99麻豆久久久国产精品免费| 美女网站一区二区| 国产一区二区美女诱惑| 成人精品亚洲人成在线| 色偷偷88欧美精品久久久| 欧美日韩免费观看一区二区三区 | 国产大陆a不卡| 99精品视频在线观看| 欧美日韩高清在线| 欧美va亚洲va国产综合| 国产精品伦理一区二区| 亚洲三级在线观看| 日韩 欧美一区二区三区| 国内欧美视频一区二区| 91在线观看美女| 日韩三级视频在线观看| 国产精品第一页第二页第三页| 亚洲国产精品人人做人人爽| 国产尤物一区二区在线| 色噜噜狠狠成人网p站| 欧美一区二区三区婷婷月色 | 99久久精品国产毛片| 欧美日韩国产小视频在线观看| 欧美成人性战久久| 亚洲色图欧美在线| 蜜桃av噜噜一区| 色婷婷综合久久久久中文 | 国产精品久久网站| 午夜国产不卡在线观看视频| 国产一区二区不卡在线| 欧美精品三级在线观看| 国产精品久久久久一区二区三区| 亚洲国产精品影院| 93久久精品日日躁夜夜躁欧美| 欧美裸体一区二区三区| 国产精品久久久久久久午夜片| 三级亚洲高清视频| 日本韩国欧美一区二区三区| 久久久国产精华| 蜜臀av国产精品久久久久| 在线看不卡av| 亚洲欧美在线视频观看| 国产乱对白刺激视频不卡| 欧美日韩国产高清一区| 亚洲精品视频免费观看| 高清在线成人网| 精品国产一区二区在线观看| 天天综合日日夜夜精品| 91久久精品一区二区三| 日本一区二区高清| 国产精选一区二区三区| 日韩欧美www| 婷婷久久综合九色综合伊人色| 91一区一区三区| 综合网在线视频| 成人激情综合网站| 欧美韩国一区二区| 国产精品伊人色| 国产亚洲综合色| 国产精品1区二区.| 国产欧美一区二区在线观看| 国产一区二区网址| 久久品道一品道久久精品| 国内久久精品视频| 国产亚洲精品7777| 成人av午夜电影| 亚洲九九爱视频| 欧美亚洲自拍偷拍|