?? test_sd2.c
字號:
/********************************************************************** test_sd2.c ********************************************************************** test_sd2 - Test program for GAUL. Copyright ?2002-2005, Stewart Adcock <stewart@linux-domain.com> All rights reserved. The latest version of this program should be available at: http://gaul.sourceforge.net/ This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Alternatively, if your project is incompatible with the GPL, I will probably agree to requests for permission to use the terms of any other license. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER. A full copy of the GNU General Public License should be in the file "COPYING" provided with this distribution; if not, see: http://www.gnu.org/ ********************************************************************** Synopsis: Test program for GAUL's steepest ascent algorithm. This program aims to solve a function of the form (0.75-A)+(0.95-B)^2+(0.23-C)^3+(0.71-D)^4 = 0 **********************************************************************/#include "gaul.h"/********************************************************************** test_score() synopsis: Fitness function. parameters: return: updated: 25 Nov 2002 **********************************************************************/boolean test_score(population *pop, entity *entity) { double A, B, C, D; /* Parameters. */ A = ((double *)entity->chromosome[0])[0]; B = ((double *)entity->chromosome[0])[1]; C = ((double *)entity->chromosome[0])[2]; D = ((double *)entity->chromosome[0])[3]; entity->fitness = -(fabs(0.75-A)+SQU(0.95-B)+fabs(CUBE(0.23-C))+FOURTH_POW(0.71-D)); return TRUE; }/********************************************************************** test_analytical_gradient() synopsis: Calculate gradients analytically. parameters: return: last updated: 25 Nov 2002 **********************************************************************/double test_analytical_gradient(population *pop, entity *entity, double *params, double *grad) { double grms=0.0; /* RMS gradient. */ double A, B, C, D; /* The parameters. */ if (!pop) die("Null pointer to population structure passed."); if (!entity) die("Null pointer to entity structure passed."); A = params[0]; B = params[1]; C = params[2]; D = params[3]; grad[0] = A > 0.75+TINY ? -1.0 : ( A < 0.75-TINY ? 1.0 : 0.0 ); grad[1] = (0.95 - B); grad[2] = C > 0.23 ? -SQU(0.23 - C) : SQU(0.23 - C); grad[3] = CUBE(0.71 - D); grms = sqrt(grad[0]*grad[0]+grad[1]*grad[1]+grad[2]*grad[2]+grad[3]*grad[3]); return grms; }/********************************************************************** test_iteration_callback() synopsis: Generation callback parameters: return: updated: 25 Nov 2002 **********************************************************************/boolean test_iteration_callback(int iteration, entity *solution) { printf( "%d: A = %f B = %f C = %f D = %f (fitness = %f)\n", iteration, ((double *)solution->chromosome[0])[0], ((double *)solution->chromosome[0])[1], ((double *)solution->chromosome[0])[2], ((double *)solution->chromosome[0])[3], solution->fitness ); return TRUE; }/********************************************************************** test_seed() synopsis: Seed genetic data. parameters: population *pop entity *adam return: success last updated: 25 Nov 2002 **********************************************************************/boolean test_seed(population *pop, entity *adam) {/* Checks. */ if (!pop) die("Null pointer to population structure passed."); if (!adam) die("Null pointer to entity structure passed.");/* Seeding. */ ((double *)adam->chromosome[0])[0] = random_double(2.0); ((double *)adam->chromosome[0])[1] = random_double(2.0); ((double *)adam->chromosome[0])[2] = random_double(2.0); ((double *)adam->chromosome[0])[3] = random_double(2.0); return TRUE; }/********************************************************************** main() synopsis: Main function. parameters: return: updated: 14 Apr 2005 **********************************************************************/int main(int argc, char **argv) { population *pop; /* Population of solutions. */ entity *solution; /* Optimised solution. */ random_seed(23091975); pop = ga_genesis_double( 50, /* const int population_size */ 1, /* const int num_chromo */ 4, /* const int len_chromo */ NULL, /* GAgeneration_hook generation_hook */ test_iteration_callback, /* GAiteration_hook iteration_hook */ NULL, /* GAdata_destructor data_destructor */ NULL, /* GAdata_ref_incrementor data_ref_incrementor */ test_score, /* GAevaluate evaluate */ test_seed, /* GAseed seed */ NULL, /* GAadapt adapt */ NULL, /* GAselect_one select_one */ NULL, /* GAselect_two select_two */ NULL, /* GAmutate mutate */ NULL, /* GAcrossover crossover */ NULL, /* GAreplace replace */ NULL /* vpointer User data */ ); ga_population_set_gradient_parameters( pop, /* population *pop */ NULL, /* const GAto_double to_double */ NULL, /* const GAfrom_double from_double */ test_analytical_gradient, /* const GAgradient gradient */ 0, /* const int num_dimensions */ 0.1 /* const double step_size */ ); /* Evaluate and sort the initial population members (i.e. select best of 50 random solutions. */ ga_population_score_and_sort(pop); /* Use the best population member. */ solution = ga_get_entity_from_rank(pop, 0); ga_steepestascent_double( pop, /* population *pop */ solution, /* entity *solution */ 1000 /* const int max_iterations */ ); ga_extinction(pop); exit(EXIT_SUCCESS); }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -