亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 人工智能模式識別中基于支持向量機的分類算法在識別領域屬于較新的應用
??
字號:
-------------------------------------------------- Document for MATLAB interface of LIBSVM --------------------------------------------------Introduction============This tool provides a simple interface to LIBSVM, a library for support vectormachines (http://www.csie.ntu.edu.tw/~cjlin/libsvm). It is very easy to use asthe usage and the way of specifying parameters is the same as that of LIBSVM.Installation============On Unix systems, we recommend using GNU g++ as your compiler andtype 'make' to build 'svmtrain.mexglx' and 'svmpredict.mexglx'.Note that we assume your MATLAB is installed in '/usr/local/matlab',if not, please change MATLABDIR in Makefile.Example:        linux> makeOn Windows systems, pre-built 'svmtrain.dll' and 'svmpredict.dll' areincluded in this package, so no need to conduct installation. If youhave modified the sources and would like to re-build the package, type'mex -setup' in MATLAB to choose a compiler for mex first. Then type'make' to start the installation.Example:        matlab> mex -setup        (ps: MATLAB will show the following messages to setup default compiler.)        Please choose your compiler for building external interface (MEX) files:         Would you like mex to locate installed compilers [y]/n? y        Select a compiler:         [1] Microsoft Visual C/C++ version 6.0 in C:\Program Files\Microsoft Visual Studio         [0] None         Compiler: 1        Please verify your choices:         Compiler: Microsoft Visual C/C++ 6.0         Location: C:\Program Files\Microsoft Visual Studio         Are these correct?([y]/n): y        matlab> makeUsage=====matlab> model = svmtrain(training_label_vector, training_instance_matrix, [,'libsvm_options']);        -training_label_vector:            An m by 1 vector of training labels.        -training_instance_matrix:            An m by n matrix of m training instances with n features.            It can be dense or sparse.        -libsvm_option:            A string of training options in the same format as that of LIBSVM.matlab> [predicted_label, accuracy] = svmpredict(testing_label_vector, testing_instance_matrix, model [,'libsvm_option']);        -testing_label_vector:            An m by 1 vector of prediction labels. If labels of test            data are unknown, simply use any random values.        -testing_instance_matrix:            An m by n matrix of m testing instances with n features.            It can be dense or sparse.        -model:            The output of svmtrain.        -libsvm_option:            A string of testing options in the same format as that of LIBSVM.Returned Model Structure========================The 'svmtrain' function returns a model which can be used for futureprediction.  It is a structure and is organized as [Parameters, nr_class,totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]:        -Parameters: parameters        -nr_class: number of classes; = 2 for regression/one-class svm        -totalSV: total #SV        -rho: -b of the decision function(s) wx+b        -Label: label of each class; empty for regression/one-class SVM        -ProbA: pairwise probability information; empty if -b 0 or in one-class SVM        -ProbB: pairwise probability information; empty if -b 0 or in one-class SVM        -nSV: number of SVs for each class; empty for regression/one-class SVM        -sv_coef: coefficients for SVs in decision functions        -SVs: support vectorsIf you do not use the option '-b 1', ProbA and ProbB are emptymatrices. If the '-v' option is specified, cross validation isconducted and the returned model is just a scalar: cross-validationaccuracy for classification and mean-squared error for regression.More details about this model can be found in LIBSVM FAQ(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVMimplementation document(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf).Result of Prediction====================The function 'svmpredict' has two outputs. The first one,predicted_label, is in general a vector of predicted labels. If '-b 1'is specified as an option of 'svmpredict' and the input modelpossesses probability information, it is a matrix where additionalelements in each row are probabilities that the test data is in eachclass. Note that the order of classes is the same as Label in themodel structure. The second output, accuracy, is a vector includingaccuracy (for classification), mean squared error, and squaredcorrelation coefficient (for regression).Examples========matlab> load heart_scale.matmatlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2');matlab> [predict_label, accuracy] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training dataFor probability estimates, you need '-b 1' for training and testing:matlab> load heart_scale.matmatlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2 -b 1');matlab> load heart_scale.matmatlab> [predict_label, accuracy] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1');Other Utilities===============A simple matlab program read_sparse.m reads files in libsvm format: [svm_lbl, svm_data] = read_sparse(fname); Two outputs are labels and instances, which can then be used as inputsof svmtrain or svmpredict. This code was initiated by Hsuan-Tien Linfrom Caltech and rewritten by Rong-En Fan from National TaiwanUniversity.Additional Information======================This interface was initially written by Jun-Cheng Chen, Kuan-Jen Peng,Chih-Yuan Yang and Chih-Huai Cheng from Department of ComputerScience, National Taiwan University. The current version was preparedby Rong-En Fan. If you find this tool useful, please cite LIBSVM asfollowsChih-Chung Chang and Chih-Jen Lin, LIBSVM : a library forsupport vector machines, 2001. Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvmFor any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91在线观看下载| 久久66热re国产| 中文字幕av一区 二区| 欧美成人a在线| 欧美成人a在线| 久久这里只有精品6| 久久午夜羞羞影院免费观看| 精品国产1区2区3区| 26uuu国产在线精品一区二区| 国产目拍亚洲精品99久久精品| 欧美成人bangbros| 国产午夜亚洲精品不卡| 欧美国产精品中文字幕| 国产精品成人免费精品自在线观看| 国产精品色呦呦| 亚洲伦理在线精品| 午夜精品在线看| 伦理电影国产精品| 国产伦精品一区二区三区免费| 国产成人超碰人人澡人人澡| av不卡免费在线观看| 欧美色成人综合| 日韩三级电影网址| 中文字幕精品—区二区四季| 亚洲精品伦理在线| 蜜臀国产一区二区三区在线播放| 国产一区在线视频| 日本高清视频一区二区| 91精品久久久久久久99蜜桃| 久久久精品综合| 亚洲美女电影在线| 久久精品理论片| www.欧美色图| 日韩一区二区三| 亚洲欧美综合网| 免费在线观看日韩欧美| 国产高清一区日本| 欧美日韩一本到| 日本一区二区三区国色天香| 亚洲成人www| 成人av动漫网站| 日韩一级片网址| 一区二区三区小说| 国产精品123区| 8v天堂国产在线一区二区| 国产精品理论在线观看| 蜜桃av噜噜一区二区三区小说| 高清在线成人网| 日韩一级片在线观看| 一级中文字幕一区二区| 国产成人av电影在线| 欧美一级在线免费| 一区二区三区**美女毛片| 国产成a人无v码亚洲福利| 91精品欧美一区二区三区综合在| 日韩电影免费在线观看网站| 97精品国产97久久久久久久久久久久 | 青青草原综合久久大伊人精品| 国产精品1024久久| 日韩欧美黄色影院| 五月天亚洲精品| 欧美视频精品在线| 亚洲激情图片小说视频| 国产91在线|亚洲| 精品国产成人系列| 美美哒免费高清在线观看视频一区二区 | 国产一区二区福利| 欧美一区日韩一区| 奇米一区二区三区| 欧美肥胖老妇做爰| 亚洲地区一二三色| 精品视频一区三区九区| 亚洲无线码一区二区三区| 日本高清视频一区二区| 一区二区三区鲁丝不卡| 日本丰满少妇一区二区三区| 亚洲美女免费在线| 91福利区一区二区三区| 亚洲欧美aⅴ...| 色先锋aa成人| 亚洲一区二区三区国产| 欧美亚洲禁片免费| 天天射综合影视| 欧美电影免费观看高清完整版在线| 日本免费新一区视频| 日韩视频不卡中文| 国产一区二区精品在线观看| 欧美国产日韩精品免费观看| 成人精品国产福利| 一区二区三区欧美视频| 欧美日韩国产高清一区| 日韩va欧美va亚洲va久久| 精品国产一区二区三区忘忧草| 国产精品一区三区| 亚洲欧洲性图库| 欧美日韩一区中文字幕| 麻豆高清免费国产一区| 久久一留热品黄| 91麻豆精品视频| 日韩av一区二区在线影视| 久久―日本道色综合久久| 9i在线看片成人免费| 亚洲成人自拍偷拍| 久久久精品综合| 欧美性猛交一区二区三区精品| 舔着乳尖日韩一区| 国产亚洲精品资源在线26u| 成人aa视频在线观看| 亚洲一区二区三区三| 久久久久久久久97黄色工厂| 色综合久久综合网| 久久精品国产免费看久久精品| 国产精品国产成人国产三级| 在线成人高清不卡| 风间由美一区二区三区在线观看| 亚洲国产精品精华液网站 | 色久优优欧美色久优优| 日韩成人一区二区三区在线观看| 国产亚洲精久久久久久| 欧美美女bb生活片| 不卡欧美aaaaa| 精彩视频一区二区三区| 亚洲福利电影网| 国产精品国产三级国产有无不卡| 欧美精品黑人性xxxx| 99久久精品免费看国产| 国产精品一区二区久久精品爱涩| 亚洲国产美国国产综合一区二区| 国产欧美视频在线观看| 91精品国产色综合久久不卡蜜臀 | 国产精品综合av一区二区国产馆| 亚洲激情一二三区| 中文一区二区在线观看| 欧美成人艳星乳罩| 制服.丝袜.亚洲.中文.综合| 91精品91久久久中77777| 成人污视频在线观看| 精品一区二区三区免费播放| 亚洲www啪成人一区二区麻豆| 亚洲婷婷综合久久一本伊一区| 国产亚洲欧美中文| 精品成人在线观看| 欧美大尺度电影在线| 国产精品毛片a∨一区二区三区 | 中文字幕av资源一区| 精品久久人人做人人爱| 欧美一区二区三区思思人| 欧美视频一二三区| 欧美日韩一区二区三区视频| 欧美伊人久久久久久久久影院| 99re这里只有精品视频首页| 成人中文字幕电影| 成人美女视频在线观看18| av一二三不卡影片| 91美女片黄在线| 欧美三级三级三级| 欧美精品久久天天躁| 欧美一区二区三区日韩视频| 91麻豆精品国产无毒不卡在线观看| 欧美久久久久久蜜桃| 欧美一区二区成人6969| 欧美mv日韩mv国产网站| 久久综合九色综合欧美就去吻 | 国产成人在线视频播放| 高清免费成人av| 91亚洲资源网| 欧美精品在线一区二区| 欧美一区二区三区在| 26uuu亚洲综合色欧美| 欧美激情综合网| 亚洲视频图片小说| 日韩精品乱码免费| 国精品**一区二区三区在线蜜桃| 国产精品一区在线| 91视频.com| 欧美丰满高潮xxxx喷水动漫| 精品国产乱码久久久久久免费 | 欧美精品久久一区二区三区| 日韩精品自拍偷拍| 国产精品国产a| 午夜不卡在线视频| 国产麻豆视频精品| 日本韩国一区二区三区视频| 制服视频三区第一页精品| 久久久久久久久久美女| 亚洲精品国产第一综合99久久| 五月天激情综合网| 岛国一区二区三区| 欧美精品色综合| 欧美aaaaa成人免费观看视频| 国产乱子轮精品视频| 在线日韩国产精品| 精品国产sm最大网站| 一区二区久久久| 国产高清精品网站| 911国产精品| 亚洲免费三区一区二区| 国产精品影视在线| 欧美电影在哪看比较好| 中文无字幕一区二区三区|