亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svmtrain.c

?? 人工智能模式識別中基于支持向量機的分類算法在識別領域屬于較新的應用
?? C
字號:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <ctype.h>#include "svm.h"#include "mex.h"#include "svm_model_matlab.h"#define CMD_LEN 2048#define Malloc(type,n) (type *)malloc((n)*sizeof(type))void exit_with_help(){	mexPrintf(	"Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');\n"	"libsvm_options:\n"	"-s svm_type : set type of SVM (default 0)\n"	"	0 -- C-SVC\n"	"	1 -- nu-SVC\n"	"	2 -- one-class SVM\n"	"	3 -- epsilon-SVR\n"	"	4 -- nu-SVR\n"	"-t kernel_type : set type of kernel function (default 2)\n"	"	0 -- linear: u'*v\n"	"	1 -- polynomial: (gamma*u'*v + coef0)^degree\n"	"	2 -- radial basis function: exp(-gamma*|u-v|^2)\n"	"	3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"	"-d degree : set degree in kernel function (default 3)\n"	"-g gamma : set gamma in kernel function (default 1/k)\n"	"-r coef0 : set coef0 in kernel function (default 0)\n"	"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"	"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"	"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"	"-m cachesize : set cache memory size in MB (default 40)\n"	"-e epsilon : set tolerance of termination criterion (default 0.001)\n"	"-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n"	"-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"	"-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n"	"-v n: n-fold cross validation mode\n"	);}// svm argumentsstruct svm_parameter param;		// set by parse_command_linestruct svm_problem prob;		// set by read_problemstruct svm_model *model;struct svm_node *x_space;int cross_validation;int nr_fold;double do_cross_validation(){	int i;	int total_correct = 0;	double total_error = 0;	double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;	double *target = Malloc(double,prob.l);	double retval = 0.0;	// fix random seed to have same results for each run	srand(1);	svm_cross_validation(&prob,&param,nr_fold,target);	if(param.svm_type == EPSILON_SVR ||	   param.svm_type == NU_SVR)	{		for(i=0;i<prob.l;i++)		{			double y = prob.y[i];			double v = target[i];			total_error += (v-y)*(v-y);			sumv += v;			sumy += y;			sumvv += v*v;			sumyy += y*y;			sumvy += v*y;		}		mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l);		mexPrintf("Cross Validation Squared correlation coefficient = %g\n",			((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/			((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))			);		retval = total_error/prob.l;	}	else	{		for(i=0;i<prob.l;i++)			if(target[i] == prob.y[i])				++total_correct;		mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);		retval = 100.0*total_correct/prob.l;	}	free(target);	return retval;}// nrhs should be 3int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name){	int i, argc = 1;	char cmd[CMD_LEN];	char *argv[CMD_LEN/2];	// default values	param.svm_type = C_SVC;	param.kernel_type = RBF;	param.degree = 3;	param.gamma = 0;	// 1/k	param.coef0 = 0;	param.nu = 0.5;	param.cache_size = 40;	param.C = 1;	param.eps = 1e-3;	param.p = 0.1;	param.shrinking = 1;	param.probability = 0;	param.nr_weight = 0;	param.weight_label = NULL;	param.weight = NULL;	cross_validation = 0;	if(nrhs <= 1)		return 1;	if(nrhs == 2)		return 0;	// put options in argv[]	mxGetString(prhs[2], cmd,  mxGetN(prhs[2]) + 1);	if((argv[argc] = strtok(cmd, " ")) == NULL)		return 0;	while((argv[++argc] = strtok(NULL, " ")) != NULL)		;	// parse options	for(i=1;i<argc;i++)	{		if(argv[i][0] != '-') break;		if(++i>=argc)			return 1;		switch(argv[i-1][1])		{			case 's':				param.svm_type = atoi(argv[i]);				break;			case 't':				param.kernel_type = atoi(argv[i]);				break;			case 'd':				param.degree = atof(argv[i]);				break;			case 'g':				param.gamma = atof(argv[i]);				break;			case 'r':				param.coef0 = atof(argv[i]);				break;			case 'n':				param.nu = atof(argv[i]);				break;			case 'm':				param.cache_size = atof(argv[i]);				break;			case 'c':				param.C = atof(argv[i]);				break;			case 'e':				param.eps = atof(argv[i]);				break;			case 'p':				param.p = atof(argv[i]);				break;			case 'h':				param.shrinking = atoi(argv[i]);				break;			case 'b':				param.probability = atoi(argv[i]);				break;			case 'v':				cross_validation = 1;				nr_fold = atoi(argv[i]);				if(nr_fold < 2)				{					mexPrintf("n-fold cross validation: n must >= 2\n");					return 1;				}				break;			case 'w':				++param.nr_weight;				param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);				param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);				param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);				param.weight[param.nr_weight-1] = atof(argv[i]);				break;			default:				mexPrintf("unknown option\n");				return 1;		}	}	return 0;}// read in a problem (in svmlight format)void read_problem_dense(const mxArray *label_vec, const mxArray *instance_mat){	int i, j, k;	int elements, max_index, sc;	double *samples, *labels;	labels = mxGetPr(label_vec);	samples = mxGetPr(instance_mat);	sc = mxGetN(instance_mat);	elements = 0;	// the number of instance	prob.l = mxGetM(instance_mat);	for(i = 0; i < prob.l; i++)	{		for(k = 0; k < sc; k++)			if(samples[k * prob.l + i] != 0)				elements++;		// count the '-1' element		elements++;	}	prob.y = Malloc(double,prob.l);	prob.x = Malloc(struct svm_node *,prob.l);	x_space = Malloc(struct svm_node, elements);	max_index = sc;	j = 0;	for(i = 0; i < prob.l; i++)	{		prob.x[i] = &x_space[j];		prob.y[i] = labels[i];		for(k = 0; k < sc; k++)		{			if(samples[k * prob.l + i] != 0)			{				x_space[j].index = k + 1;				x_space[j].value = samples[k * prob.l + i];				j++;			}		}		x_space[j++].index = -1;	}	if(param.gamma == 0)		param.gamma = 1.0/max_index;}void read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat){	int i, j, k, low, high;	int *ir, *jc;	int elements, max_index, num_samples;	double *samples, *labels;	mxArray *instance_mat_tr; // transposed instance sparse matrix	// transpose instance matrix	{		mxArray *prhs[1], *plhs[1];		prhs[0] = mxDuplicateArray(instance_mat);		if (mexCallMATLAB(1, plhs, 1, prhs, "transpose")) {			mexPrintf("Error: cannot transpose training instance matrix\n");			return;		}		instance_mat_tr = plhs[0];	}	// each column is one instance	labels = mxGetPr(label_vec);	samples = mxGetPr(instance_mat_tr);	ir = mxGetIr(instance_mat_tr);	jc = mxGetJc(instance_mat_tr);	num_samples = mxGetNzmax(instance_mat_tr);	// the number of instance	prob.l = mxGetN(instance_mat_tr);	elements = num_samples + prob.l;	max_index = mxGetM(instance_mat_tr);	prob.y = Malloc(double,prob.l);	prob.x = Malloc(struct svm_node *,prob.l);	x_space = Malloc(struct svm_node, elements);	j = 0;	for(i=0;i<prob.l;i++)	{		prob.x[i] = &x_space[j];		prob.y[i] = labels[i];		low = jc[i], high = jc[i+1];		for(k=low;k<high;k++)		{			x_space[j].index = ir[k] + 1;			x_space[j].value = samples[k];			j++;	 	}		x_space[j++].index = -1;	}	if(param.gamma == 0)		param.gamma = 1.0/max_index;}static void fake_answer(mxArray *plhs[]){	plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);}// Interface function of matlab// now assume prhs[0]: label prhs[1]: featuresvoid mexFunction( int nlhs, mxArray *plhs[],		int nrhs, const mxArray *prhs[] ){	const char *error_msg;	// Translate the input Matrix to the format such that svmtrain.exe can recognize it	if(nrhs > 0 && nrhs < 4)	{		if(parse_command_line(nrhs, prhs, NULL))		{			exit_with_help();			svm_destroy_param(&param);			fake_answer(plhs);			return;		}		if(mxIsSparse(prhs[1]))			read_problem_sparse(prhs[0], prhs[1]);		else			read_problem_dense(prhs[0], prhs[1]);		// svmtrain's original code		error_msg = svm_check_parameter(&prob, &param);		if(error_msg)		{			mexPrintf("Error: %s\n", error_msg);			svm_destroy_param(&param);			free(prob.y);			free(prob.x);			free(x_space);			fake_answer(plhs);			return;		}		if(cross_validation)		{			double *ptr;			plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);			ptr = mxGetPr(plhs[0]);			ptr[0] = do_cross_validation();		}		else		{			int nr_feat = mxGetN(prhs[1]);			const char *error_msg;			model = svm_train(&prob, &param);			error_msg = model_to_matlab_structure(plhs, nr_feat, model);			if (error_msg)				mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg);			svm_destroy_model(model);		}		svm_destroy_param(&param);		free(prob.y);		free(prob.x);		free(x_space);	}	else	{		exit_with_help();		fake_answer(plhs);	}}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩国产欧美一区二区三区| 亚洲综合色区另类av| 91精品国产综合久久久久久| 972aa.com艺术欧美| av一本久道久久综合久久鬼色| 精品亚洲免费视频| 国产一区二区电影| 国v精品久久久网| 国产99一区视频免费| 国产原创一区二区三区| 国产精品一卡二卡在线观看| 久久99精品久久久| 国产成人精品免费| 不卡的看片网站| 91啪亚洲精品| 欧美三级中文字幕在线观看| 欧美日韩在线观看一区二区| 日韩三级视频在线观看| 91精品欧美福利在线观看| 欧美电影免费观看高清完整版在线| 精品国产99国产精品| 国产精品天干天干在观线| 亚洲另类在线制服丝袜| 日韩国产成人精品| 国产一区二三区好的| 色爱区综合激月婷婷| 制服丝袜亚洲网站| 国产女人18毛片水真多成人如厕| 综合在线观看色| 日韩国产欧美一区二区三区| 国产夫妻精品视频| 欧美色男人天堂| 久久亚洲精华国产精华液| 一区二区三区欧美日| 老司机精品视频线观看86| 99视频国产精品| 日韩三级高清在线| 亚洲欧洲国产日韩| 另类综合日韩欧美亚洲| 色婷婷精品大在线视频| 精品国产91乱码一区二区三区 | 精品国产麻豆免费人成网站| 久久先锋影音av鲁色资源| 一区二区三区日韩欧美| 国产精品一区二区在线观看网站| 欧美一a一片一级一片| 久久婷婷国产综合国色天香 | 欧美xxxxx裸体时装秀| 亚洲欧洲日韩av| 国产老妇另类xxxxx| 欧美猛男男办公室激情| 国产精品初高中害羞小美女文| 日韩二区在线观看| 欧美在线视频不卡| 国产精品毛片a∨一区二区三区| 日韩综合一区二区| 色爱区综合激月婷婷| 国产视频一区二区三区在线观看| 日日骚欧美日韩| 色哟哟在线观看一区二区三区| 久久久久国产免费免费| 蜜桃视频在线一区| 欧美年轻男男videosbes| 一区二区三区中文字幕在线观看| 不卡在线观看av| 国产免费观看久久| 国产精品一区二区三区四区| 日韩久久免费av| 美国三级日本三级久久99| 欧美一区二区三区在线视频| 亚州成人在线电影| 欧美日韩免费电影| 亚洲成a人v欧美综合天堂| 色视频欧美一区二区三区| 亚洲色图色小说| 91丨九色丨蝌蚪富婆spa| 中文字幕亚洲精品在线观看| 99久久久国产精品免费蜜臀| 成人免费在线观看入口| 一本大道av伊人久久综合| 亚洲综合视频在线| 欧美自拍丝袜亚洲| 亚洲成av人综合在线观看| 在线成人小视频| 捆绑变态av一区二区三区| 精品理论电影在线观看| 国产大片一区二区| 国产精品美日韩| 色综合天天综合网天天看片| 一区二区三区四区激情| 色婷婷久久久久swag精品| 丝袜亚洲精品中文字幕一区| 日韩精品一区在线| 成人午夜免费av| 亚洲欧美一区二区不卡| 欧美日韩亚洲国产综合| 美女网站色91| 国产精品久久久久四虎| 91高清在线观看| 麻豆精品视频在线观看免费| 久久久久久电影| 99精品欧美一区二区三区综合在线| 一区二区三区在线高清| 日韩欧美中文一区| 北条麻妃国产九九精品视频| 亚洲午夜电影在线观看| 久久天堂av综合合色蜜桃网| 99r精品视频| 久久国产日韩欧美精品| 中文字幕一区二区三区蜜月| 91麻豆精品国产91久久久更新时间| 久久99国产精品久久| 亚洲视频在线一区观看| 日韩欧美色电影| 91黄色在线观看| 国产成人鲁色资源国产91色综| 亚洲激情图片qvod| 国产无遮挡一区二区三区毛片日本| 91蝌蚪国产九色| 久久se精品一区精品二区| 亚洲人成电影网站色mp4| 精品国产精品网麻豆系列| 欧美性生交片4| 国产乱码精品一品二品| 天天综合色天天综合| 亚洲欧美乱综合| 国产区在线观看成人精品| 欧美一区二区在线免费播放| 99久久精品99国产精品| 国产一区二区三区免费在线观看| 亚洲综合一区二区| 亚洲欧洲国产专区| 久久欧美一区二区| 日韩欧美一区二区不卡| 色哟哟在线观看一区二区三区| 国产美女在线精品| 久久精品99久久久| 日本中文字幕不卡| 亚洲成精国产精品女| 亚洲免费观看高清完整版在线观看熊| 久久久久99精品国产片| 精品久久人人做人人爱| 欧美一区二区播放| 欧美狂野另类xxxxoooo| 欧美日韩精品一区二区在线播放| av一区二区三区在线| 成人av免费在线| 99久久综合99久久综合网站| 国产黑丝在线一区二区三区| 国产综合久久久久影院| 国产一区二区调教| 国产精品 日产精品 欧美精品| 狠狠狠色丁香婷婷综合久久五月| 日本亚洲视频在线| 美女在线观看视频一区二区| 日本少妇一区二区| 青青草国产成人av片免费| 日韩av中文在线观看| 免费欧美在线视频| 狠狠色综合播放一区二区| 久久99最新地址| 国产精品一二三| 国产91丝袜在线播放| 成人精品免费看| 一本大道久久a久久精品综合| 91成人免费电影| 91精品国产综合久久婷婷香蕉| 中文乱码免费一区二区| 久久影视一区二区| 国产拍欧美日韩视频二区| 一区免费观看视频| 亚洲一区二区av电影| 免费成人你懂的| 国产一区二区福利| 91丨porny丨在线| 欧美男人的天堂一二区| 久久这里只精品最新地址| 国产精品国产三级国产普通话三级| 亚洲同性同志一二三专区| 亚洲va韩国va欧美va精品| 激情综合色综合久久| 成人综合婷婷国产精品久久 | 日本91福利区| 国产成人av一区| 欧美三级一区二区| 久久久精品欧美丰满| 一区二区成人在线视频| 国模一区二区三区白浆| 91网站最新网址| 精品成人私密视频| 亚洲美女淫视频| 久久成人久久鬼色| 日本精品一区二区三区高清| 日韩精品一区二区三区在线播放 | 国产欧美综合在线观看第十页| 亚洲精品国久久99热| 精品无人码麻豆乱码1区2区 | 色综合久久综合| 精品久久久久久久人人人人传媒| **欧美大码日韩|