亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo5.m

?? 最新時頻分析處理軟件
?? M
字號:
%TFDEMO5 Affine class time-frequency distributions.%	Time-Frequency Toolbox demonstration.%%	See also TFDEMO.%	O. Lemoine - July 1996. %	Copyright (c) CNRS.clc; zoom on; clf; echo on;% The Affine class : presentation%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% This class gathers all the quadratic time-frequency representations % which are covariant by translation in time and dilation. The WVD is% an element of the affine class, provided that we introduce an % arbitrary non-zero frequency nu0, and identify the scale with the % inverse of the frequency : a=nu0/nu.% The choice of an element in the affine class can be reduced to the % choice of an affine correlation kernel PI(t,nu). When PI is a % two-dimensional low-pass function, it plays the role of an affine% smoothing function which tries to reduce the interferences generated % by the WVD.%% The scalogram %"""""""""""""""%  A first example of affine distribution is given by the scalogram,% which is the squared modulus of the wavelet transform. It is the affine% counterpart of the spectrogram. As illustrated in the following example,% the tradeoff between time and frequency resolutions encountered with the% spectrogram is also present with the scalogram.%  We analyze a signal composed of two gaussian atoms, one with a low % central frequency, and the other with a high one, with the scalogram % (Morlet wavelet) :sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);clf; tfrscalo(sig);% The result obtained brings to the fore dependency, with regard to the % frequency, of the smoothing applied to the WVD, and consequently of the% resolutions in time and frequency.%% Press any key to continue... pause; clc; clf; set(gca,'visible','off'); % The affine smoothed pseudo Wigner distribution (ASPWVD)%"""""""""""""""""""""""""""""""""""""""""""""""""""""""""%  One way to overcome the tradeoff between time and frequency resolutions% of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing% function which is separable in time and frequency. The resulting% distribution is called the affine smoothed pseudo WVD. It allows a % flexible choice of time and scale resolutions in an independent manner % through the choice of two windows g and h. %%  As for the SPWVD, the ASPWVD allows a continuous passage from the % scalogram to the WVD, under the condition that the smoothing functions % g and h are gaussian. The time-bandwidth product then goes from 1 % (scalogram) to 0 (WVD), with an independent control of the time and % frequency resolutions. This is illustrated in the following example :	load movsc2wvpausemovie(M,5);% Here again, the WVD gives the best resolutions (in time and in frequency),% but presents the most important interferences, whereas the scalogram gives% the worst resolutions, but with nearly no interferences ; and the affine% smoothed-pseudo WVD allows to choose the best compromise between these two% extremes.%% Press any key to continue... pause; clc; close% The localized bi-frequency kernel (or affine Wigner) distributions%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%  A useful subclass of the affine class consists in characterization% functions which are perfectly localized on power laws or logarithmic laws% in their bi-frequency representation. The corresponding time-scale % distributions are known as the localized bi-frequency kernel distributions.% % The Bertrand distribution%"""""""""""""""""""""""""""%  If we further impose to these distributions the a priori requirements of% time localization and unitarity, we obtain the Bertrand distribution. This% distribution satisfies many properties, and is the only localized% bi-frequency kernel distribution which localizes perfectly the hyperbolic% group delay signals. To illustrate this property, consider the signal % obtained using the file gdpower.m (taken for k=0), and analyze it with % the file tfrbert.m :sig=gdpower(128);tfrbert(sig,1:128,0.01,0.22,128,1);% Note that the distribution obtained is well localized on the hyperbolic% group delay, but not perfectly : this comes from the fact that the file% tfrbert.m works only on a subpart of the spectrum, between two bounds fmin% and fmax.%% Press any key to continue... pause; clc;% The D-Flandrin distribution %"""""""""""""""""""""""""""""%  If we now look for a localized bi-frequency kernel distribution which is% real, localized in time and which validates the time-marginal property, % we obtain the D-Flandrin distribution. It is the only localized % bi-frequency kernel distribution which localizes perfectly signals having % a group delay in 1/sqrt(nu). This can be illustrated as following :sig=gdpower(128,1/2);tfrdfla(sig,1:128,0.01,0.22,128,1);% Here again, the distribution is almost perfectly localized.%% Press any key to continue... pause; clc;% The active Unterberger distribution%"""""""""""""""""""""""""""""""""""""%  Finally, the only localized bi-frequency kernel distribution which% localizes perfectly signals having a group delay in 1/nu^2 is the active% Unterberger distribution :sig=gdpower(128,-1);tfrunter(sig,1:128,'A',0.01,0.22,172,1);% Press any key to continue... pause; clc;% Relation with the ambiguity domain%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%  When the signal under analysis can not be considered as narrow-band% (i.e. when its bandwidth B is not negligible compared to its central% frequency nu0), the narrow-band ambiguity function is no longer appropriate% since the Doppler effect can not be approximated as a frequency-shift. We% then consider a wide-band ambiguity function (WAF). It corresponds to % the wavelet transform of the signal x, whose mother wavelet is the signal% x itself. It is then an affine correlation function, which measure the % similarity between the signal and its translated (in time) and dilated % versions. To see how it behaves on a practical example, let us consider an% Altes signal :	sig=altes(128,0.1,0.45);clf; ambifuwb(sig);% The WAF is maximum at the origin of the ambiguity plane.  %% Press any key to continue... pause; clc  % Interference structure%~~~~~~~~~~~~~~~~~~~~~~~~%  The interference structure of the localized bi-frequency kernel % distributions can be determined thanks to the following geometric % argument : two points (t1,nu1) and (t2,nu2) belonging to the trajectory % on which a distribution is localized interfere on a third point % (ti,nui) which is necessarily located on the same trajectory.%  To illustrate this interference geometry, let us consider the case of a% signal with a sinusoidal frequency modulation :[sig,ifl]=fmsin(128);% The file plotsid.m allows one to construct the interferences of an affine% Wigner distribution perfectly localized on a power-law group-delay% (specifying k), for a given instantaneous frequency law (or the% superposition of different instantaneous frequency laws). For example, if% we consider the case of the Bertrand distribution (k=0),plotsid(1:128,ifl,0);% we obtain an interference structure completely different from the one% obtained for the Wigner-Ville distribution (k=2) :%% press any key to continue... pause;plotsid(1:128,ifl,2);% For the active Unterberger distribution (k=-1), the result is the% following : %% press any key to continue... pause;plotsid(1:128,ifl,-1); % Press any key to continue... pause; clc% The pseudo affine Wigner distributions%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%   The affine Wigner distributions show great potential as flexible% tools for time-varying spectral analysis. However, as some distributions of% the Cohen's class, they present two major practical limitations : first the% entire signal enters into the calculation of these distributions at every% point (t,nu), and second, due to their nonlinearity, interference% components arise between each pair of signal components. To overcome these% limitations, a set of (smoothed) pseudo affine Wigner distributions has% been introduced.%  Here are two examples of such distributions, analyzed on a real % echolocation signal from a bat :load bat; N=128;sig=hilbert(bat(801:7:800+N*7)');% The affine smoothed pseudo Wigner distribution %------------------------------------------------figure(1); tfrwv(sig); figure(2); tfrspaw(sig,1:N,2,24,0,0.1,0.4,N,1); % On the left, the WVD presents interference terms because of the% non-linearity of the frequency modulation. On the right, the affine% frequency smoothing operated by the affine smoothed pseudo Wigner% distribution almost perfectly suppressed the interference terms.%% Press any key to continue... pause; clc% The pseudo Bertrand distribution%----------------------------------figure(1); tfrbert(sig,1:N,0.1,0.4,N,1);figure(2); tfrspaw(sig,1:N,0,32,0,0.1,0.4,N,1); % The first plot represents the Bertrand distribution. The approximate% hyperbolic group delay law of the bat signal explains the good result% obtained with this distribution (compared to the WVD). However, it% remains some interference terms, which are almost perfectly canceled% on the second plot (pseudo Bertrand distribution).%% Press any key to end this demonstrationpause; close;echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久精品国产一区| 成人app在线观看| 亚洲线精品一区二区三区| 椎名由奈av一区二区三区| 国产精品你懂的| 亚洲视频在线观看三级| 亚洲三级电影网站| 亚洲国产日韩一级| 蜜桃av一区二区| 久久福利视频一区二区| 国产成人精品亚洲日本在线桃色| 国产精品亚洲一区二区三区在线| 国产suv精品一区二区6| 不卡影院免费观看| 欧美日韩一区二区三区四区| 91精选在线观看| 国产午夜亚洲精品羞羞网站| 中文字幕人成不卡一区| 亚洲成人tv网| 黄色成人免费在线| www.av亚洲| 欧美日高清视频| 久久久一区二区| 一区二区三区四区在线免费观看| 亚洲欧美成人一区二区三区| 婷婷综合久久一区二区三区| 国产一区二区伦理片| 色综合色综合色综合色综合色综合| 日本精品裸体写真集在线观看| 欧美一区二区在线免费播放| 国产午夜精品一区二区三区四区 | 一区二区三区四区不卡视频| 亚洲1区2区3区4区| 成人h动漫精品一区二区| 欧美日韩精品欧美日韩精品| 日本一区二区三区电影| 亚洲bt欧美bt精品777| 国产高清精品网站| 欧美日韩激情一区二区三区| 欧美国产精品v| 奇米影视一区二区三区| 91在线观看成人| 久久夜色精品一区| 日本亚洲三级在线| 日本乱人伦aⅴ精品| 欧美激情一区二区在线| 日韩综合小视频| 91麻豆123| 国产免费久久精品| 美腿丝袜亚洲一区| 欧美日韩三级在线| 亚洲免费观看视频| 成人高清视频免费观看| 26uuu精品一区二区| 日韩成人精品在线| 欧美日韩一级二级| 亚洲一级电影视频| 一本到一区二区三区| 国产精品美女久久久久久 | 日韩视频一区二区在线观看| 亚洲欧美成aⅴ人在线观看| 国产不卡视频在线观看| 精品欧美乱码久久久久久1区2区| 亚洲成人综合在线| 欧美三区在线观看| 亚洲成人777| 欧美高清激情brazzers| 亚洲第一会所有码转帖| 欧美在线免费播放| 亚洲综合色区另类av| 91国在线观看| 一区二区三区四区乱视频| 不卡影院免费观看| 亚洲欧美日韩一区二区| 91丨九色丨蝌蚪富婆spa| 亚洲日本免费电影| 色嗨嗨av一区二区三区| 亚洲成精国产精品女| 欧美久久久久久久久中文字幕| 亚洲已满18点击进入久久| 欧美吻胸吃奶大尺度电影 | 久久精品国产一区二区| 日韩欧美不卡在线观看视频| 激情亚洲综合在线| 日本一区二区免费在线观看视频| 国产风韵犹存在线视精品| 国产精品国产三级国产| 99国产精品久久| 亚洲一区二区三区三| 欧美一区二区三区视频| 国产在线国偷精品产拍免费yy| 久久免费美女视频| 91色.com| 免费欧美日韩国产三级电影| 久久精品网站免费观看| 在线观看视频一区二区欧美日韩| 亚洲18色成人| 国产亚洲一二三区| 欧洲av在线精品| 极品销魂美女一区二区三区| 欧美国产成人在线| 欧美日韩视频在线第一区| 激情小说欧美图片| 亚洲精品国产a久久久久久| 91精品国产免费| 成人黄色777网| 日韩国产欧美在线播放| 国产精品三级av在线播放| 精品视频全国免费看| 国产精品影音先锋| 午夜久久电影网| 国产精品视频一二| 欧美一级搡bbbb搡bbbb| 北条麻妃国产九九精品视频| 天天爽夜夜爽夜夜爽精品视频| 久久久www免费人成精品| 在线看日本不卡| 懂色av中文字幕一区二区三区| 亚洲午夜免费电影| 亚洲欧洲精品一区二区三区不卡| 在线播放欧美女士性生活| av在线播放成人| 美女在线一区二区| 亚洲成a人v欧美综合天堂| 国产精品麻豆视频| 久久久久综合网| 7777女厕盗摄久久久| 色婷婷综合久久久中文字幕| 国产精品456露脸| 久久99精品久久久久久| 午夜久久久久久久久久一区二区| ㊣最新国产の精品bt伙计久久| 日韩精品一区二区三区蜜臀| 欧美日产国产精品| 欧洲国产伦久久久久久久| 91丨porny丨首页| 成人综合婷婷国产精品久久免费| 久久97超碰色| 麻豆91免费看| 免费久久精品视频| 日本午夜精品一区二区三区电影| 亚洲午夜电影在线| 亚洲风情在线资源站| 一区二区三区在线视频免费 | 国产精品丝袜久久久久久app| 精品粉嫩超白一线天av| 日韩午夜电影在线观看| 欧美一级久久久| 日韩你懂的在线播放| 91精品久久久久久久99蜜桃 | 成人听书哪个软件好| 国产精品综合一区二区三区| 国产乱子伦视频一区二区三区| 奇米色777欧美一区二区| 免费欧美高清视频| 激情综合五月天| 国产精品18久久久久| 成人黄色国产精品网站大全在线免费观看| 国产美女精品在线| av亚洲精华国产精华| 在线一区二区三区四区五区| 在线看不卡av| 日韩免费一区二区| 亚洲国产高清不卡| 一区二区视频在线看| 天堂久久久久va久久久久| 麻豆精品久久精品色综合| 国产一区二区三区最好精华液| 国产经典欧美精品| 色综合欧美在线视频区| 欧美日韩国产美| 久久先锋资源网| 综合久久一区二区三区| 亚洲成人午夜影院| 国产精品综合视频| 色噜噜狠狠色综合中国| 欧美一区二区私人影院日本| 久久色中文字幕| 尤物在线观看一区| 国内精品免费在线观看| 色综合一区二区| 日韩欧美一区二区久久婷婷| 国产精品国产三级国产aⅴ入口| 亚洲国产欧美另类丝袜| 国产精品系列在线观看| 欧美最新大片在线看| 精品国产乱码久久久久久久久 | 日本色综合中文字幕| 国产成人av一区| 7777精品伊人久久久大香线蕉超级流畅 | 18涩涩午夜精品.www| 琪琪久久久久日韩精品| www.色综合.com| 精品国产成人系列| 亚洲国产精品一区二区www在线 | 欧美三级欧美一级| 国产目拍亚洲精品99久久精品| 日韩激情av在线| 91在线观看地址| 亚洲国产高清aⅴ视频|