?? 數(shù)據(jù)結(jié)構(gòu)算法集錦.txt
字號(hào):
【數(shù)據(jù)結(jié)構(gòu)】算法集錦
一、數(shù)論算法
1.求兩數(shù)的最大公約數(shù)
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;
2.求兩數(shù)的最小公倍數(shù)
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;
3.素?cái)?shù)的求法
A.小范圍內(nèi)判斷一個(gè)數(shù)是否為質(zhì)數(shù):
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;
B.判斷l(xiāng)ongint范圍內(nèi)的數(shù)是否為素?cái)?shù)(包含求50000以內(nèi)的素?cái)?shù)表):
procedure getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}
二、圖論算法
1.最小生成樹
A.Prim算法:
procedure prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點(diǎn)k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點(diǎn)k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點(diǎn)的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal算法:(貪心)
按權(quán)值遞增順序刪去圖中的邊,若不形成回路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點(diǎn)v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;
procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do
vset[i]:=[i];{初始化定義n個(gè)集合,第I個(gè)集合包含一個(gè)元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數(shù),q為邊集指針}
sort;
{對(duì)所有邊按權(quán)值遞增排序,存于e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個(gè)頂點(diǎn)的序號(hào),e[I].len為第I條邊的長(zhǎng)度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
2.最短路徑
A.標(biāo)號(hào)法求解單源點(diǎn)最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點(diǎn)i到源點(diǎn)的最短路徑}
mark:array[1..maxn] of boolean;
procedure bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點(diǎn)}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對(duì)每一個(gè)已計(jì)算出最短路徑的點(diǎn)}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}
B.Floyed算法求解所有頂點(diǎn)對(duì)之間的最短路徑:
procedure floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0;
{p[I,j]表示I到j(luò)的最短路徑上j的前驅(qū)結(jié)點(diǎn)}
for k:=1 to n do {枚舉中間結(jié)點(diǎn)}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 算法:
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer;
{pre[i]指最短路徑上I的前驅(qū)結(jié)點(diǎn)}
mark:array[1..maxn] of boolean;
procedure dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環(huán)一次加入一個(gè)離1集合最近的結(jié)點(diǎn)并調(diào)整其他結(jié)點(diǎn)的參數(shù)}
min:=maxint; u:=0; {u記錄離1集合最近的結(jié)點(diǎn)}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then
begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;
3.計(jì)算圖的傳遞閉包
Procedure Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and
t[k,j]);
End;
4.無(wú)向圖的連通分量
A.深度優(yōu)先
procedure dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對(duì)結(jié)點(diǎn)I染色}
c[i]:=color;
dfs(I,color);
end;
end;
B 寬度優(yōu)先(種子染色法)
5.關(guān)鍵路徑
幾個(gè)定義: 頂點(diǎn)1為源點(diǎn),n為匯點(diǎn)。
a. 頂點(diǎn)事件最早發(fā)生時(shí)間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve
(1) = 0;
b. 頂點(diǎn)事件最晚發(fā)生時(shí)間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中
Vl(n) = Ve(n);
c. 邊活動(dòng)最早開始時(shí)間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動(dòng)最晚開始時(shí)間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動(dòng)j為關(guān)鍵活動(dòng),由關(guān)鍵活動(dòng)組成的路徑為關(guān)鍵路徑。
求解方法:
a. 從源點(diǎn)起topsort,判斷是否有回路并計(jì)算Ve;
b. 從匯點(diǎn)起topsort,求Vl;
c. 算Ee 和 El;
6.拓?fù)渑判? 找入度為0的點(diǎn),刪去與其相連的所有邊,不斷重復(fù)這一過(guò)程。
例 尋找一數(shù)列,其中任意連續(xù)p項(xiàng)之和為正,任意q 項(xiàng)之和為負(fù),若不存在則輸出NO.
7.回路問(wèn)題
Euler回路(DFS)
定義:經(jīng)過(guò)圖的每條邊僅一次的回路。(充要條件:圖連同且無(wú)奇點(diǎn))
Hamilton回路
定義:經(jīng)過(guò)圖的每個(gè)頂點(diǎn)僅一次的回路。
一筆畫
充要條件:圖連通且奇點(diǎn)個(gè)數(shù)為0個(gè)或2個(gè)。
9.判斷圖中是否有負(fù)權(quán)回路 Bellman-ford 算法
x[I],y[I],t[I]分別表示第I條邊的起點(diǎn),終點(diǎn)和權(quán)。共n個(gè)結(jié)點(diǎn)和m條邊。
procedure bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return
true;
end;
10.第n最短路徑問(wèn)題
*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然后求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎(chǔ)上求解。
[color=#0000FF]三、背包問(wèn)題[/color]
*部分背包問(wèn)題可有貪心法求解:計(jì)算Pi/Wi
數(shù)據(jù)結(jié)構(gòu):
w[i]:第i個(gè)背包的重量;
p[i]:第i個(gè)背包的價(jià)值;
1.0-1背包: 每個(gè)背包只能使用一次或有限次(可轉(zhuǎn)化為一次):
A.求最多可放入的重量。
NOIP2001 裝箱問(wèn)題
有一個(gè)箱子容量為v(正整數(shù),o≤v≤20000),同時(shí)有n個(gè)物品(o≤n≤30),每個(gè)物品有一個(gè)體積
(正整數(shù))。要求從 n 個(gè)物品中,任取若千個(gè)裝入箱內(nèi),使箱子的剩余空間為最小。
l 搜索方法
procedure search(k,v:integer); {搜索第k個(gè)物品,剩余空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit;
{s[n]為前n個(gè)物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]為前i個(gè)物品中選擇若干個(gè)放入使其體積正好為j的標(biāo)志,為布爾型。
實(shí)現(xiàn):將最優(yōu)化問(wèn)題轉(zhuǎn)化為判定性問(wèn)題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v)
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -