?? boxjenkins.dat
字號:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This file obtained from the web site (on 3/29/99)% % http://neural.cs.nthu.edu.tw/jang/benchmark/% % that is the % IEEE Neural Networks Council Standards Committee% Working Group on Data Modeling Benchmarks%% Comment from that web site:%% The goal of the Working Group on Data Modeling Benchmarks (under IEEE Neural Networks Council % Standards Committee) is to provide an easy access to references to modeling % approaches and related datasets via WWW. Hopefully this can facilitate further % research and comparisons on computational data modeling approaches, including artificial % neural networks, fuzzy inference systems, CART, MARS, and all nonlinear regression % and optimization techniques. %% This page is constantly under construction, but the lists of datasets/publications % are by no means complete. If you have new datasets/papers and would like to% put them here, please send me an email (jang@cs.nthu.edu.tw) to let me know where % to link them. Any feedbacks and suggestions are also highly welcome. %% J.-S. Roger Jang% CS Dept., Tsing Hua Univ., Taiwan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The file obtained is below (without the lines commented out)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%----------------------------------------%"Box and Jenkins furnace data from:% G.E.P. Box and G.M. Jenkins% Time Series Analysis, Forecasting and Control% San Francisco, Holden Day, 1970, pp. 532-533.%% There are originally 296 data points {y(t),u(t)}, from t=1 to t=296.% y(t) is the output CO2 concentration and u(t) is the input gas flow% rate. Here we are trying to predict y(t) based on {y(t-1), y(t-2),% y(t-3), y(t-4), u(t-1), u(t-2), u(t-3), u(t-4), u(t-5), u(t-6)}. This% reduces the number of effective data points to 290.% Most methods find that the best set of input variables for predicting% y(t) is {y(t-1),u(t-4)}. Sugeno and Yasukawa has found that the best% set of input variables for predicting y(t) is {y(t-1), u(t-4), u(t-3)}.%% The first column below is the output variable y(t), the remaining% columns are the input variables {y(t-1), y(t-2),...u(t-6)}.%"%%output y(t);%input y(t-1) y(t-2) y(t-3) y(t-4) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) u(t-6) ; 5.27e+01 5.31e+01 5.34e+01 5.35e+01 5.35e+01 4.41e-01 3.73e-01 3.39e-01 1.78e-01 0.00e+00 -1.09e-01 5.24e+01 5.27e+01 5.31e+01 5.34e+01 5.35e+01 4.61e-01 4.41e-01 3.73e-01 3.39e-01 1.78e-01 0.00e+00 5.22e+01 5.24e+01 5.27e+01 5.31e+01 5.34e+01 3.48e-01 4.61e-01 4.41e-01 3.73e-01 3.39e-01 1.78e-01 5.20e+01 5.22e+01 5.24e+01 5.27e+01 5.31e+01 1.27e-01 3.48e-01 4.61e-01 4.41e-01 3.73e-01 3.39e-01 5.20e+01 5.20e+01 5.22e+01 5.24e+01 5.27e+01 -1.80e-01 1.27e-01 3.48e-01 4.61e-01 4.41e-01 3.73e-01 5.24e+01 5.20e+01 5.20e+01 5.22e+01 5.24e+01 -5.88e-01 -1.80e-01 1.27e-01 3.48e-01 4.61e-01 4.41e-01 5.30e+01 5.24e+01 5.20e+01 5.20e+01 5.22e+01 -1.055e+00 -5.88e-01 -1.80e-01 1.27e-01 3.48e-01 4.61e-01 5.40e+01 5.30e+01 5.24e+01 5.20e+01 5.20e+01 -1.421e+00 -1.055e+00 -5.88e-01 -1.80e-01 1.27e-01 3.48e-01 5.49e+01 5.40e+01 5.30e+01 5.24e+01 5.20e+01 -1.52e+00 -1.421e+00 -1.055e+00 -5.88e-01 -1.80e-01 1.27e-01 5.60e+01 5.49e+01 5.40e+01 5.30e+01 5.24e+01 -1.302e+00 -1.52e+00 -1.421e+00 -1.055e+00 -5.88e-01 -1.80e-01 5.68e+01 5.60e+01 5.49e+01 5.40e+01 5.30e+01 -8.14e-01 -1.302e+00 -1.52e+00 -1.421e+00 -1.055e+00 -5.88e-01 5.68e+01 5.68e+01 5.60e+01 5.49e+01 5.40e+01 -4.75e-01 -8.14e-01 -1.302e+00 -1.52e+00 -1.421e+00 -1.055e+00 5.64e+01 5.68e+01 5.68e+01 5.60e+01 5.49e+01 -1.93e-01 -4.75e-01 -8.14e-01 -1.302e+00 -1.52e+00 -1.421e+00 5.57e+01 5.64e+01 5.68e+01 5.68e+01 5.60e+01 8.80e-02 -1.93e-01 -4.75e-01 -8.14e-01 -1.302e+00 -1.52e+00 5.50e+01 5.57e+01 5.64e+01 5.68e+01 5.68e+01 4.35e-01 8.80e-02 -1.93e-01 -4.75e-01 -8.14e-01 -1.302e+00 5.43e+01 5.50e+01 5.57e+01 5.64e+01 5.68e+01 7.71e-01 4.35e-01 8.80e-02 -1.93e-01 -4.75e-01 -8.14e-01 5.32e+01 5.43e+01 5.50e+01 5.57e+01 5.64e+01 8.66e-01 7.71e-01 4.35e-01 8.80e-02 -1.93e-01 -4.75e-01 5.23e+01 5.32e+01 5.43e+01 5.50e+01 5.57e+01 8.75e-01 8.66e-01 7.71e-01 4.35e-01 8.80e-02 -1.93e-01 5.16e+01 5.23e+01 5.32e+01 5.43e+01 5.50e+01 8.91e-01 8.75e-01 8.66e-01 7.71e-01 4.35e-01 8.80e-02 5.12e+01 5.16e+01 5.23e+01 5.32e+01 5.43e+01 9.87e-01 8.91e-01 8.75e-01 8.66e-01 7.71e-01 4.35e-01 5.08e+01 5.12e+01 5.16e+01 5.23e+01 5.32e+01 1.263e+00 9.87e-01 8.91e-01 8.75e-01 8.66e-01 7.71e-01 5.05e+01 5.08e+01 5.12e+01 5.16e+01 5.23e+01 1.775e+00 1.263e+00 9.87e-01 8.91e-01 8.75e-01 8.66e-01 5.00e+01 5.05e+01 5.08e+01 5.12e+01 5.16e+01 1.976e+00 1.775e+00 1.263e+00 9.87e-01 8.91e-01 8.75e-01 4.92e+01 5.00e+01 5.05e+01 5.08e+01 5.12e+01 1.934e+00 1.976e+00 1.775e+00 1.263e+00 9.87e-01 8.91e-01 4.84e+01 4.92e+01 5.00e+01 5.05e+01 5.08e+01 1.866e+00 1.934e+00 1.976e+00 1.775e+00 1.263e+00 9.87e-01 4.79e+01 4.84e+01 4.92e+01 5.00e+01 5.05e+01 1.832e+00 1.866e+00 1.934e+00 1.976e+00 1.775e+00 1.263e+00 4.76e+01 4.79e+01 4.84e+01 4.92e+01 5.00e+01 1.767e+00 1.832e+00 1.866e+00 1.934e+00 1.976e+00 1.775e+00 4.75e+01 4.76e+01 4.79e+01 4.84e+01 4.92e+01 1.608e+00 1.767e+00 1.832e+00 1.866e+00 1.934e+00 1.976e+00 4.75e+01 4.75e+01 4.76e+01 4.79e+01 4.84e+01 1.265e+00 1.608e+00 1.767e+00 1.832e+00 1.866e+00 1.934e+00 4.76e+01 4.75e+01 4.75e+01 4.76e+01 4.79e+01 7.90e-01 1.265e+00 1.608e+00 1.767e+00 1.832e+00 1.866e+00 4.81e+01 4.76e+01 4.75e+01 4.75e+01 4.76e+01 3.60e-01 7.90e-01 1.265e+00 1.608e+00 1.767e+00 1.832e+00 4.90e+01 4.81e+01 4.76e+01 4.75e+01 4.75e+01 1.15e-01 3.60e-01 7.90e-01 1.265e+00 1.608e+00 1.767e+00 5.00e+01 4.90e+01 4.81e+01 4.76e+01 4.75e+01 8.80e-02 1.15e-01 3.60e-01 7.90e-01 1.265e+00 1.608e+00 5.11e+01 5.00e+01 4.90e+01 4.81e+01 4.76e+01 3.31e-01 8.80e-02 1.15e-01 3.60e-01 7.90e-01 1.265e+00 5.18e+01 5.11e+01 5.00e+01 4.90e+01 4.81e+01 6.45e-01 3.31e-01 8.80e-02 1.15e-01 3.60e-01 7.90e-01 5.19e+01 5.18e+01 5.11e+01 5.00e+01 4.90e+01 9.60e-01 6.45e-01 3.31e-01 8.80e-02 1.15e-01 3.60e-01 5.17e+01 5.19e+01 5.18e+01 5.11e+01 5.00e+01 1.409e+00 9.60e-01 6.45e-01 3.31e-01 8.80e-02 1.15e-01 5.12e+01 5.17e+01 5.19e+01 5.18e+01 5.11e+01 2.67e+00 1.409e+00 9.60e-01 6.45e-01 3.31e-01 8.80e-02 5.00e+01 5.12e+01 5.17e+01 5.19e+01 5.18e+01 2.834e+00 2.67e+00 1.409e+00 9.60e-01 6.45e-01 3.31e-01 4.83e+01 5.00e+01 5.12e+01 5.17e+01 5.19e+01 2.812e+00 2.834e+00 2.67e+00 1.409e+00 9.60e-01 6.45e-01 4.70e+01 4.83e+01 5.00e+01 5.12e+01 5.17e+01 2.483e+00 2.812e+00 2.834e+00 2.67e+00 1.409e+00 9.60e-01 4.58e+01 4.70e+01 4.83e+01 5.00e+01 5.12e+01 1.929e+00 2.483e+00 2.812e+00 2.834e+00 2.67e+00 1.409e+00 4.56e+01 4.58e+01 4.70e+01 4.83e+01 5.00e+01 1.485e+00 1.929e+00 2.483e+00 2.812e+00 2.834e+00 2.67e+00 4.60e+01 4.56e+01 4.58e+01 4.70e+01 4.83e+01 1.214e+00 1.485e+00 1.929e+00 2.483e+00 2.812e+00 2.834e+00 4.69e+01 4.60e+01 4.56e+01 4.58e+01 4.70e+01 1.239e+00 1.214e+00 1.485e+00 1.929e+00 2.483e+00 2.812e+00 4.78e+01 4.69e+01 4.60e+01 4.56e+01 4.58e+01 1.608e+00 1.239e+00 1.214e+00 1.485e+00 1.929e+00 2.483e+00 4.82e+01 4.78e+01 4.69e+01 4.60e+01 4.56e+01 1.905e+00 1.608e+00 1.239e+00 1.214e+00 1.485e+00 1.929e+00 4.83e+01 4.82e+01 4.78e+01 4.69e+01 4.60e+01 2.023e+00 1.905e+00 1.608e+00 1.239e+00 1.214e+00 1.485e+00 4.79e+01 4.83e+01 4.82e+01 4.78e+01 4.69e+01 1.815e+00 2.023e+00 1.905e+00 1.608e+00 1.239e+00 1.214e+00 4.72e+01 4.79e+01 4.83e+01 4.82e+01 4.78e+01 5.35e-01 1.815e+00 2.023e+00 1.905e+00 1.608e+00 1.239e+00 4.72e+01 4.72e+01 4.79e+01 4.83e+01 4.82e+01 1.22e-01 5.35e-01 1.815e+00 2.023e+00 1.905e+00 1.608e+00 4.81e+01 4.72e+01 4.72e+01 4.79e+01 4.83e+01 9.00e-03 1.22e-01 5.35e-01 1.815e+00 2.023e+00 1.905e+00 4.94e+01 4.81e+01 4.72e+01 4.72e+01 4.79e+01 1.64e-01 9.00e-03 1.22e-01 5.35e-01 1.815e+00 2.023e+00 5.06e+01 4.94e+01 4.81e+01 4.72e+01 4.72e+01 6.71e-01 1.64e-01 9.00e-03 1.22e-01 5.35e-01 1.815e+00 5.15e+01 5.06e+01 4.94e+01 4.81e+01 4.72e+01 1.019e+00 6.71e-01 1.64e-01 9.00e-03 1.22e-01 5.35e-01 5.16e+01 5.15e+01 5.06e+01 4.94e+01 4.81e+01 1.146e+00 1.019e+00 6.71e-01 1.64e-01 9.00e-03 1.22e-01 5.12e+01 5.16e+01 5.15e+01 5.06e+01 4.94e+01 1.155e+00 1.146e+00 1.019e+00 6.71e-01 1.64e-01 9.00e-03 5.05e+01 5.12e+01 5.16e+01 5.15e+01 5.06e+01 1.112e+00 1.155e+00 1.146e+00 1.019e+00 6.71e-01 1.64e-01 5.01e+01 5.05e+01 5.12e+01 5.16e+01 5.15e+01 1.121e+00 1.112e+00 1.155e+00 1.146e+00 1.019e+00 6.71e-01 4.98e+01 5.01e+01 5.05e+01 5.12e+01 5.16e+01 1.223e+00 1.121e+00 1.112e+00 1.155e+00 1.146e+00 1.019e+00 4.96e+01 4.98e+01 5.01e+01 5.05e+01 5.12e+01 1.257e+00 1.223e+00 1.121e+00 1.112e+00 1.155e+00 1.146e+00 4.94e+01 4.96e+01 4.98e+01 5.01e+01 5.05e+01 1.157e+00 1.257e+00 1.223e+00 1.121e+00 1.112e+00 1.155e+00 4.93e+01 4.94e+01 4.96e+01 4.98e+01 5.01e+01 9.13e-01 1.157e+00 1.257e+00 1.223e+00 1.121e+00 1.112e+00
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -