亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? smo_mex.c

?? 一個工具包
?? C
字號:
/* -------------------------------------------------------------------- smo_mex.c: MEX-file for Sequential Minimal Optimizer. Compile:  mex smo_mex.c ../kernels/kernel_fun.c Synopsis:  [Alpha,bias,nsv,kercnt,trnerr,margin] =       smo_mex(data,labels,ker,arg,C,eps,tol,init_Alpha,init_bias )  Input:    data [dim x num_data ] Training vectors.   labels [1 x num_data] Labels (1 or 2).   ker [string] Kernel identifier.    arg [1 x nargs] Kernel argument(s).     C [1x1] or [2 x 1] or [num_data x 1] Regularization constant.   eps [1x1] SMO parameter (default 0.001).   tol [1x1] Tolerance of KKT-conditions (default 0.001).   init_Alpha [num_data x 1] Initial values of optimized Lagrangeians.   init_bias [1x1] Initial bias value.  Output:   Alpha [num_data x 1] Optimized Lagrangians.   bias [1x1] Bias.   nsv [1x1] Number of Support Vectors (number of Alpha > ZERO_LIM).   kercnt [1x1] Number of kernel evaluations.   trnerr [1x1] Training classification error.   margin [1x1] Margin. About: Statistical Pattern Recognition Toolbox (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac <a href="http://www.cvut.cz">Czech Technical University Prague</a> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a> Modifications: 23-may-2004, VF 14-January-2003, VF 23-october-2001, V.Franc 16-October-2001, V.Franc 27-september-2001, V.Franc, roundig of a2 in takeStep removed. 23-September-2001, V.Franc, different trade-off C1 and C2. 22-September-2001, V.Franc, kernel.c used. 19-September-2001, V.Franc, computation of nsv and nerr added. 17-September-2001, V.Franc, created. -------------------------------------------------------------------- */#include "mex.h"#include "matrix.h"#include <math.h>#include <stdlib.h>#include <string.h>#include "kernel_fun.h"/* if RANDOM is defined then a random element is used within optimization procedure as originally suggested. */#define RANDOM#define ZERO_LIM   1e-9     /* patterns with alpha > ZERO_LIM are SV */#define MAX(A,B)   (((A) > (B)) ? (A) : (B) )#define MIN(A,B)   (((A) < (B)) ? (A) : (B) )#define C(arg)   (const_C[arg])/* --- Global variables ---------------------------------------------- */unsigned long N = 0;       /* number of training patterns */double *const_C;           /* trade-off constants */double tolerance=0.001;    /* tolerance in KKT fulfilment  */double eps=0.001;          /* minimal Lagrangeian change */double *data;              /* pointer at patterns */double *target;            /* pointer at labels */double *error_cache;       /* error cache */double *alpha;             /* Lagrange multipliers */double *b;                 /* Bias (threshold) *//* ============================================================== Implementation of Sequential Minimal Optimizer (SMO)============================================================== *//* -------------------------------------------------------------- Computes value of the learned function for k-th pattern.-------------------------------------------------------------- */double learned_func( long k ){   double s = 0.;   long i;   for( i = 0; i < N; i++ ) {      if( alpha[i] > 0 )         s += alpha[i]*target[i]*kernel(i,k);   }  s -= *b;  return( s );}/* -------------------------------------------------------------- Optimizes objective function for i1-th and i2-th pattern.-------------------------------------------------------------- */long takeStep( long i1, long i2 ) {   double y1, y2, s;   long i;   double alpha1, alpha2;    double a1, a2;   double E1, E2, L, H, k11, k22, k12, eta, Lobj, Hobj;   double c1, c2;   double t;   double b1, b2, bnew;   double delta_b;   double t1, t2;   if( i1 == i2 ) return( 0 );   alpha1 = alpha[i1];   y1 = target[i1];   if( alpha1 > 0 && alpha1 < C(i1) )      E1 = error_cache[i1];   else      E1 = learned_func(i1) - y1;   alpha2 = alpha[i2];   y2 = target[i2];   if( alpha2 > 0 && alpha2 < C(i2) )      E2 = error_cache[i2];   else      E2 = learned_func(i2) - y2;   s = y1 * y2;   if(s < 0)   {      L = MAX(0, alpha2 - alpha1);      H = MIN(C(i2), C(i1) + alpha2 - alpha1);   }   else   {     L = MAX(0, alpha2 + alpha1 - C(i1) );     H = MIN(C(i2), alpha2 + alpha1);   }   if( L == H ) return( 0 );   k11 = kernel(i1,i1);   k12 = kernel(i1,i2);   k22 = kernel(i2,i2);   eta = 2 * k12 - k11 - k22;   if( eta < 0 ) {      a2 = alpha2 + y2 * (E2 - E1) / eta;      if( a2 < L )         a2 = L;      else if( a2 > H )         a2 = H;   }   else {      c1 = eta/2;      c2 = y2 * (E1-E2)- eta * alpha2;      Lobj = c1 * L * L + c2 * L;      Hobj = c1 * H * H + c2 * H;      if( Lobj > Hobj+eps )         a2 = L;      else if( Lobj < Hobj-eps )         a2 = H;      else         a2 = alpha2;   }   if( fabs(a2-alpha2) < eps*(a2+alpha2+eps )) return( 0 );   a1 = alpha1 - s * (a2 - alpha2 );   if( a1 < 0 ) {      a2 += s * a1;      a1 = 0;   }   else if( a1 > C(i1) ) {      t = a1-C(i1);      a2 += s * t;      a1 = C(i1);   }   if( a1 > 0 && a1 < C(i1) )      bnew = *b + E1 + y1 * (a1 - alpha1) * k11 + y2 * (a2 - alpha2) * k12;   else {      if( a2 > 0 && a2 < C(i2) )         bnew = *b + E2 + y1 *(a1 - alpha1)*k12 + y2*(a2 - alpha2) * k22;      else {         b1 = *b + E1 + y1 * (a1 - alpha1) * k11 + y2 * (a2 - alpha2) * k12;         b2 = *b + E2 + y1 * (a1 - alpha1) * k12 + y2 * (a2 - alpha2) * k22;         bnew = (b1 + b2) / 2;      }   }   delta_b = bnew - *b;   *b = bnew;   t1 = y1 * (a1-alpha1);   t2 = y2 * (a2-alpha2);   for( i = 0; i < N; i++ ) {     if (0 < alpha[i] && alpha[i] < C(i)) {        error_cache[i] +=  t1 * kernel(i1,i) + t2 * kernel(i2,i) - delta_b;     }   }   error_cache[i1] = 0;   error_cache[i2] = 0;   alpha[i1] = a1;     alpha[i2] = a2;     return( 1 );}/* -------------------------------------------------------------- Finds the second Lagrange multiplayer to be optimize.-------------------------------------------------------------- */long examineExample( long i1 ){   double y1, alpha1, E1, r1;   double tmax;   double E2, temp;   long k, i2;   long k0;   y1 = target[i1];   alpha1 = alpha[i1];   if( alpha1 > 0 && alpha1 < C(i1) )      E1 = error_cache[i1];   else      E1 = learned_func(i1) - y1;   r1 = y1 * E1;   if(( r1 < -tolerance && alpha1 < C(i1) )      || (r1 > tolerance && alpha1 > 0)) {    /* Try i2 by three ways; if successful, then immediately return 1; */      for( i2 = (-1), tmax = 0, k = 0; k < N; k++ ) {         if( alpha[k] > 0 && alpha[k] < C(k) ) {            E2 = error_cache[k];            temp = fabs(E1 - E2);            if( temp > tmax ) {               tmax = temp;               i2 = k;            }         }      }      if( i2 >= 0 ) {         if( takeStep(i1,i2) )            return( 1 );      }#ifdef RANDOM      for( k0 = rand(), k = k0; k < N + k0; k++ ) {         i2 = k % N;#else      for( k = 0; k < N; k++) {         i2 = k;#endif         if( alpha[i2] > 0 && alpha[i2] < C(i2) ) {            if( takeStep(i1,i2) )               return( 1 );         }      }#ifdef RANDOM      for( k0 = rand(), k = k0; k < N + k0; k++ ) {         i2 = k % N;#else      for( k = 0; k < N; k++) {         i2 = k;#endif         if( takeStep(i1,i2) )            return( 1 );      }   } /* if( ... ) */   return( 0 );}/* -------------------------------------------------------------- Main SMO optimization cycle.-------------------------------------------------------------- */void runSMO( void ){   long numChanged = 0;   long examineAll = 1;   long k;   while( numChanged > 0 || examineAll ) {      numChanged = 0;      if( examineAll ) {         for( k = 0; k < N; k++ ) {            numChanged += examineExample( k );         }      }      else {         for( k = 0; k < N; k++ ) {            if( alpha[k] != 0 && alpha[k] != C(k) )               numChanged += examineExample( k );         }      }      if( examineAll == 1 )         examineAll = 0;      else if( numChanged == 0 )         examineAll = 1;   }}/* ============================================================== Main MEX function - interface to Matlab.============================================================== */void mexFunction( int nlhs, mxArray *plhs[],		  int nrhs, const mxArray*prhs[] ){   long i,j ;   double *labels12, *initAlpha, *nsv, *tmp, *trn_err, *margin;   double nerr;   double C1, C2;   /* ---- get input arguments  ----------------------- */   if(nrhs < 5)      mexErrMsgTxt("Not enough input arguments.");   /* data matrix [dim x N ] */   if( !mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) ||       mxIsEmpty(prhs[0])    || mxIsComplex(prhs[0]) )      mexErrMsgTxt("Input X must be a real matrix.");   /* vector of labels (1,2) */   if( !mxIsNumeric(prhs[1]) || !mxIsDouble(prhs[1]) ||       mxIsEmpty(prhs[1])    || mxIsComplex(prhs[1]) ||       (mxGetN(prhs[1]) != 1 && mxGetM(prhs[1]) != 1))      mexErrMsgTxt("Input I must be a real vector.");   labels12 = mxGetPr(prhs[1]);    /* labels (1,2) */   dataA = mxGetPr(prhs[0]);  /* pointer at patterns */   dataB = dataA;   dim = mxGetM(prhs[0]);     /* data dimension */   N = mxGetN(prhs[0]);       /* number of data */   /* kernel identifier */   ker = kernel_id( prhs[2] );   if( ker == -1 )      mexErrMsgTxt("Improper kernel identifier.");         /*  get pointer to arguments  */   arg1 = mxGetPr(prhs[3]);   /*  one or two real trade-off constant(s)  */   if( !mxIsNumeric(prhs[4]) || !mxIsDouble(prhs[4]) ||       mxIsEmpty(prhs[4])    || mxIsComplex(prhs[4]) ||       (mxGetN(prhs[4]) != 1  && mxGetM(prhs[4]) != 1 ))      mexErrMsgTxt("Improper input argument C.");   else {      /* allocate memory for constant C */      if( (const_C = mxCalloc(N, sizeof(double) )) == NULL) {        mexErrMsgTxt("Not enough memory.");      }      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == 1 ) {        C1 = mxGetScalar(prhs[4]);        for( i=0; i < N; i++ ) const_C[i] = C1;       } else      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == 2 ) {         tmp = mxGetPr(prhs[4]);         C1 = tmp[0];         C2 = tmp[1];         for( i=0; i < N; i++ ) {           if( labels12[i]==1) const_C[i] = C1; else const_C[i] = C2;         }      } else      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == N ) {          tmp = mxGetPr(prhs[4]);         for( i=0; i < N; i++ ) const_C[i] = tmp[i];       } else {        mexErrMsgTxt("Improper argument C.");      }   }   /* real parameter eps */   if( nrhs >= 6 ) {      if( !mxIsNumeric(prhs[5]) || !mxIsDouble(prhs[5]) ||         mxIsEmpty(prhs[5])    || mxIsComplex(prhs[5]) ||         mxGetN(prhs[5]) != 1  || mxGetM(prhs[5]) != 1 )         mexErrMsgTxt("Input eps must be a scalar.");      else         eps = mxGetScalar(prhs[5]);   /* take eps argument */   }   /* real parameter tol */   if(nrhs >= 7) {      if( !mxIsNumeric(prhs[6]) || !mxIsDouble(prhs[6]) ||         mxIsEmpty(prhs[6])    || mxIsComplex(prhs[6]) ||         mxGetN(prhs[6]) != 1  || mxGetM(prhs[6]) != 1 )         mexErrMsgTxt("Input tol must be a scalar.");      else         tolerance = mxGetScalar(prhs[6]);  /* take tolerance argument */   }   /* real vector of Lagrangeian multipliers */   if(nrhs >= 8) {      if( !mxIsNumeric(prhs[7]) || !mxIsDouble(prhs[7]) ||          mxIsEmpty(prhs[7])    || mxIsComplex(prhs[7]) ||          (mxGetN(prhs[7]) != 1  && mxGetM(prhs[7]) != 1 ))          mexErrMsgTxt("Input Alpha must be a vector.");   }   /* real scalar - bias */   if( nrhs >= 9 ) {      if( !mxIsNumeric(prhs[8]) || !mxIsDouble(prhs[8]) ||         mxIsEmpty(prhs[8])    || mxIsComplex(prhs[8]) ||         mxGetN(prhs[8]) != 1  || mxGetM(prhs[8]) != 1 )         mexErrMsgTxt("Input bias must be a scalar.");   }   /* ---- init variables ------------------------------- */      ker_cnt = 0;   /* allocate memory for targets (labels) (1,-1) */   if( (target = mxCalloc(N, sizeof(double) )) == NULL) {      mexErrMsgTxt("Not enough memory.");   }   /* transform labels12 (1,2) from to targets (1,-1) */   for( i = 0; i < N; i++ ) {      target[i] = - labels12[i]*2 + 3;   }   /* create output variable for bias */   plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);   b = mxGetPr(plhs[1]);   /* take init value of bias if given */   if( nrhs >= 9 ) {      *b = -mxGetScalar(prhs[8]);     }   /* allocate memory for error_cache */   if( (error_cache = mxCalloc(N, sizeof(double) )) == NULL) {      mexErrMsgTxt("Not enough memory for error cache.");   }   /* create vector for Lagrangeians */   plhs[0] = mxCreateDoubleMatrix(N,1,mxREAL);   alpha = mxGetPr(plhs[0]);   /* if Lagrangeians given then use them as initial values */   if( nrhs >= 8 ) {      initAlpha = mxGetPr(prhs[7]);      for( i = 0; i < N; i++ ) {         alpha[i] = initAlpha[i];      }      /* Init error cache for non-bound multipliers. */      for( i = 0; i < N; i++ ) {         if( alpha[i] != 0 && alpha[i] != C(i) ) {            error_cache[i] = learned_func(i) - target[i];         }      }   }   /* ---- run SMO ------------------------------------------- */   runSMO();   /* ---- outputs  --------------------------------- */   if( nlhs >= 3 ) {      /* count number of support vectors */      plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);      nsv = mxGetPr(plhs[2]);      *nsv = 0;      for( i = 0; i < N; i++ ) {         if( alpha[i] > ZERO_LIM ) (*nsv)++; else alpha[i] = 0;      }   }   if( nlhs >= 4 ) {     plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);     (*mxGetPr(plhs[3])) = (double)ker_cnt;   }   if( nlhs >= 5) {     /* evaluates classification error on traning patterns */     plhs[4] = mxCreateDoubleMatrix(1,1,mxREAL);     trn_err = mxGetPr(plhs[4]);     nerr = 0;     for( i = 0; i < N; i++ ) {        if( target[i] == 1 ) {           if( learned_func(i) < 0 ) nerr++;        }        else           if( learned_func(i) >= 0 ) nerr++;     }     *trn_err = nerr/N;   }   if( nlhs >= 6) {           /* compute margin */      plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL);      margin = mxGetPr(plhs[5]);      *margin = 0;      for( i = 0; i < N; i++ ) {        for( j = 0; j < N; j++ ) {           if( alpha[i] > 0 && alpha[j] > 0 )              *margin += alpha[i]*alpha[j]*target[i]*target[j]*kernel(i,j);        }      }      *margin = 1/sqrt(*margin);   }   /* decision function of type <w,x>+b is used */   *b = -*b;   /* ----- free memory --------------------------------------- */   mxFree( error_cache );   mxFree( target );}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99re在线视频这里只有精品| 日韩三级在线免费观看| 欧美日韩成人一区| 国产日韩精品视频一区| 亚洲精品久久久久久国产精华液| 久久国产精品色婷婷| 99re在线精品| 中文字幕乱码日本亚洲一区二区 | 国产精品久久一卡二卡| 日韩1区2区日韩1区2区| 91老师片黄在线观看| 久久免费看少妇高潮| 首页欧美精品中文字幕| 99精品视频在线免费观看| 精品免费国产一区二区三区四区| 亚洲高清视频的网址| 91香蕉视频mp4| 国产亚洲精久久久久久| 美女视频网站久久| 在线观看视频一区二区| 国产精品久久久久影院老司| 国产米奇在线777精品观看| 91精品国产色综合久久| 亚洲国产人成综合网站| 一本大道av伊人久久综合| 国产精品丝袜91| 成人免费毛片app| 久久精品免视看| 国产精选一区二区三区| 日韩精品资源二区在线| 麻豆久久一区二区| 91精品国产麻豆国产自产在线| 午夜亚洲福利老司机| 欧美午夜影院一区| 亚洲第一搞黄网站| 91麻豆精品国产自产在线| 亚洲成人av中文| 欧美精品九九99久久| 亚洲成人免费电影| 555www色欧美视频| 久久国产成人午夜av影院| 欧美本精品男人aⅴ天堂| 久久99精品视频| 久久久精品免费观看| 国产精品99久久久久久久vr| 国产精品色一区二区三区| 粉嫩av亚洲一区二区图片| 欧美国产精品一区| 99在线精品视频| 亚洲午夜日本在线观看| 91精品国产91久久综合桃花| 激情综合色综合久久| 久久久久国产精品麻豆| 成人app软件下载大全免费| 亚洲日本欧美天堂| 欧洲精品一区二区| 石原莉奈在线亚洲二区| 制服丝袜激情欧洲亚洲| 激情小说欧美图片| 国产精品毛片无遮挡高清| 色999日韩国产欧美一区二区| 日韩精品一区第一页| 精品久久免费看| 99久久精品国产导航| 亚洲一区二区三区四区在线观看 | 成人爽a毛片一区二区免费| 日韩美女视频19| 日韩欧美久久一区| 成人一区二区在线观看| 亚洲一区视频在线| 久久久国产午夜精品| 一本到不卡精品视频在线观看| 青青草91视频| 国产精品人妖ts系列视频| 欧美日本乱大交xxxxx| 成人免费看黄yyy456| 亚洲一区在线播放| 久久久精品欧美丰满| 欧美日韩一区三区| 国产91丝袜在线播放0| 首页亚洲欧美制服丝腿| 国产精品国产馆在线真实露脸| 91精品国产欧美一区二区18| 成人av网在线| 久色婷婷小香蕉久久| 亚洲精品videosex极品| 久久精品亚洲麻豆av一区二区 | 久久久久久久一区| 日本久久电影网| 夫妻av一区二区| 青娱乐精品视频在线| 最新久久zyz资源站| 精品国产sm最大网站| 欧美午夜精品一区二区蜜桃| 白白色 亚洲乱淫| 激情国产一区二区| 日韩专区中文字幕一区二区| 亚洲一区二区三区视频在线 | 2023国产精品自拍| 欧美日韩一区二区在线视频| 99久久综合国产精品| 狠狠狠色丁香婷婷综合久久五月| 亚洲午夜激情网页| 自拍偷拍欧美精品| 中文字幕一区二区日韩精品绯色| 久久夜色精品国产欧美乱极品| 欧美一区二区三区啪啪| 欧美日韩久久久| 欧美图片一区二区三区| 色狠狠桃花综合| 日本道免费精品一区二区三区| 99久免费精品视频在线观看| 99精品视频在线播放观看| 国产激情精品久久久第一区二区 | 在线综合视频播放| 欧美综合欧美视频| 91激情五月电影| 色欧美乱欧美15图片| 91亚洲精品一区二区乱码| 97se狠狠狠综合亚洲狠狠| 成人av动漫网站| 色94色欧美sute亚洲线路一ni| 在线视频你懂得一区| 欧美亚洲日本国产| 欧美三级日韩在线| 欧美丰满美乳xxx高潮www| 欧美日韩不卡一区| 欧美一区二区三区免费观看视频| 日韩欧美色综合网站| 26uuu另类欧美| 国产精品国产三级国产普通话三级| 国产精品色噜噜| 丝袜脚交一区二区| 久久99国产乱子伦精品免费| 高清在线不卡av| 91麻豆免费观看| 欧美日韩电影在线| 久久综合五月天婷婷伊人| 国产日产亚洲精品系列| 136国产福利精品导航| 亚洲国产一区二区在线播放| 免费在线看成人av| 国产一区二区伦理| av一本久道久久综合久久鬼色| 色屁屁一区二区| 欧美大片在线观看一区二区| 国产精品久久久久久久久免费桃花| 日韩理论在线观看| 亚洲午夜精品在线| 久久99精品久久久久久动态图| 成人黄色国产精品网站大全在线免费观看 | 久久色中文字幕| 亚洲欧美日韩国产一区二区三区| 日本不卡一区二区三区高清视频| 国产精品一区二区三区99| 99精品视频免费在线观看| 欧美精品vⅰdeose4hd| 久久久亚洲精品一区二区三区| 一区二区三区在线高清| 日韩精品久久理论片| 成人免费视频国产在线观看| 欧美日韩国产成人在线免费| 国产精品午夜在线| 婷婷综合五月天| 99综合影院在线| 欧美电影免费提供在线观看| 一区二区三区四区国产精品| 国产一区二区不卡在线| 欧美男生操女生| 亚洲精品高清在线| 国产精品一区2区| 6080午夜不卡| 亚洲麻豆国产自偷在线| 黑人巨大精品欧美一区| 欧美色男人天堂| 亚洲天堂中文字幕| 国产一区二区三区日韩| 91麻豆精品久久久久蜜臀| 亚洲免费在线视频一区 二区| 成人综合婷婷国产精品久久蜜臀| 日韩三级中文字幕| 五月婷婷久久丁香| 91免费国产在线| 国产精品午夜久久| 激情综合网天天干| 欧美一区二区三区四区高清| 亚洲一线二线三线久久久| 99国产精品久久久久久久久久| 国产片一区二区三区| 韩国中文字幕2020精品| 日韩精品资源二区在线| 亚洲一区二区三区四区中文字幕| 一本色道久久综合亚洲aⅴ蜜桃| 国产精品美女一区二区三区 | 成人午夜电影网站| 久久久精品免费观看| 国产一区二区中文字幕| 精品免费日韩av| 国产成人免费视频精品含羞草妖精| 精品国产一区二区三区忘忧草|