亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? sdsa.txt

?? 人臉檢測源代碼,是人工智能檢索方面比較常用的,大家下班啊
?? TXT
字號:

人臉檢測源代碼
===
#ifdef _CH_
#define WIN32
#error "The file needs cvaux, which is not wrapped yet. Sorry"
#endif

#ifndef _EiC
#include "cv.h"
#include "cvaux.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#endif

#ifdef _EiC
#define WIN32
#endif

#define ORIG_WIN_SIZE  24
static CvMemStorage* storage = 0;
static CvHidHaarClassifierCascade* hid_cascade = 0;

#define WINNAME  "Result"

void detect_and_draw( IplImage* image, IplImage* TempImage );

int main( int argc, char** argv )
{
    CvCapture* capture = 0;

    CvHaarClassifierCascade* cascade =
    cvLoadHaarClassifierCascade( "<default_face_cascade>",
                         cvSize( ORIG_WIN_SIZE, ORIG_WIN_SIZE ));
    hid_cascade = cvCreateHidHaarClassifierCascade( cascade, 0, 0, 0, 1 );
    cvReleaseHaarClassifierCascade( &cascade );

    cvNamedWindow( WINNAME, 1 );
    storage = cvCreateMemStorage(0);
    
    if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
        capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
    else if( argc == 2 )
        capture = cvCaptureFromAVI( argv[1] ); 

    if( capture )
    {
        IplImage *frame, *temp;
        cvGrabFrame( capture );
        frame = cvRetrieveFrame( capture );
        
        temp = cvCreateImage( cvSize(frame->width/2,frame->height/2), 8, 3 );

        for(;;)
        {
            if( !cvGrabFrame( capture )) 
                break;
            frame = cvRetrieveFrame( capture );
            if( !frame )
                break;

            detect_and_draw( frame, temp );

            if( cvWaitKey( 10 ) >= 0 )
            {
                //cvReleaseImage( &frame );
                //cvReleaseImage( &temp );
                cvReleaseCapture( &capture );
                cvDestroyWindow(WINNAME);
                return  0;
            }
        } 
    }
    else  
    {
        char* filename = argc == 2 ? argv[1] : (char*)"lena.jpg";
        IplImage* image = cvLoadImage( filename, 1 );
        IplImage* temp = cvCreateImage( cvSize(image->width/2,image->height/2), 8, 3 );

        if( image )
        {
            cvFlip( image, image, 0 );
            image->origin = IPL_ORIGIN_BL;
            detect_and_draw( image, temp );
            cvWaitKey(0);
            cvReleaseImage( &image );
            cvReleaseImage( &temp );
        }
        cvDestroyWindow(WINNAME);
        return 0;
    }
    return 0;
}

void detect_and_draw( IplImage* img, IplImage* temp )
{
    int scale = 2;
    CvPoint pt1, pt2;
    int i;

    cvPyrDown( img, temp, CV_GAUSSIAN_5x5 );
#ifdef WIN32
    cvFlip( temp, temp, 0 );
#endif    
    cvClearMemStorage( storage );

    if( hid_cascade )
    {
        CvSeq* faces = cvHaarDetectObjects( temp, hid_cascade, storage,
                                            1.2, 2, CV_HAAR_DO_CANNY_PRUNING );
        for( i = 0; i < (faces ? faces->total : 0); i++ )
        {
            CvRect* r = (CvRect*)cvGetSeqElem( faces, i, 0 );
            pt1.x = r->x*scale;
            pt2.x = (r->x+r->width)*scale;
#ifdef WIN32            
            pt1.y = img->height - r->y*scale;
            pt2.y = img->height - (r->y+r->height)*scale;
#else
            pt1.y = r->y*scale;
            pt2.y = (r->y+r->height)*scale;
#endif            
            cvRectangle( img, pt1, pt2, CV_RGB(255,255,0), 3 );
        }
    }

    cvShowImage(WINNAME, img );
    //cvReleaseImage( &temp );
}

#ifdef _EiC
main(1,"facedetect.c");
#endif

面是算法的簡單描述:

Rapid Object Detection using a Boosted Cascade of Simple Features


This method entails a machine learning approach for visual object detection, which is capable of processing images extremely rapidly and achieving high detection rates. 

First it introduces a new image representation called “ Integral Image” which allows the features used by detector to be computed very quickly. The integral image can be computed from an image using a few operations per pixel. Once computed, any one of these Harr-like features can be computed at any scale or location in constant time.


The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a large set and yields extremely efficient classifiers. 

The third is a method for combining increasingly more complex classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions.


The object detection classifies images based on the value of simple features. The simple features used are reminiscent of Haar basis functions. Here it uses three kinds of features: two-rectangle feature, three-rectangle feature and four-rectangle. Rectangle features are somewhat primitive when compared with alternatives such as steerable filters. Steerable filters are excellent for the detailed analysis of boundaries, image compression, and texture analysis. In order to use a small number of features to form an effective classifier, the weak learning algorithm is designed to select the single rectangle feature which best separates the positive and negative examples. For each feature, the weak learner determines the optimal threshold classification function, such that the minimum
number of examples is misclassified. The overall form of the detection process is that of a degenerate decision tree, called a “cascade”. 

A positive result from the first classifier triggers the evaluation of a second classifier, which has also been adjusted to achieve very high detection rates. A positive result from the second classifier triggers a third classifiers, and so on. The cascade training process involves two types of tradeoffs. In most cases classifiers with more features will achieve higher detection rates and lower false positive rates. At the same time classifiers with more features require more time to compute.



?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产电影一区在线| 国产精品国产a级| 亚洲国产中文字幕在线视频综合 | 欧美色网一区二区| 国产欧美日韩中文久久| 国模大尺度一区二区三区| 日韩午夜三级在线| 天天影视网天天综合色在线播放| 欧美日韩午夜影院| 亚洲第一av色| 午夜精品福利一区二区蜜股av| 欧美乱熟臀69xxxxxx| 亚洲成人av一区二区| 色欧美片视频在线观看| 亚洲欧美偷拍三级| 91女人视频在线观看| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 日韩一二三四区| 青青草国产成人99久久| 久久新电视剧免费观看| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 日韩精品一区二区在线| 粉嫩绯色av一区二区在线观看| 国产精品成人一区二区三区夜夜夜 | 国产精品色在线| 99久久精品一区| 首页综合国产亚洲丝袜| 日韩一二三区不卡| 成人国产精品免费观看动漫| 亚洲女与黑人做爰| 99久久精品免费观看| 亚洲成a人在线观看| 日韩一卡二卡三卡| 国产成人亚洲精品青草天美| 中文字幕欧美一区| 91美女福利视频| 午夜激情一区二区| 日韩欧美久久一区| 在线一区二区三区四区| 日韩电影在线免费看| 成人欧美一区二区三区| 欧美日韩国产系列| 成人午夜在线播放| 亚洲成人在线观看视频| 欧美一级精品大片| 色美美综合视频| 青青草国产成人99久久| 一区二区三区在线免费观看| 制服丝袜国产精品| 国产成人精品免费在线| 亚洲国产日韩一区二区| 精品国产成人系列| 在线成人av影院| 成人av电影免费观看| 美女视频免费一区| 亚洲综合在线免费观看| 中文字幕不卡一区| 欧美一区二区三区啪啪| 精品无码三级在线观看视频| 亚洲猫色日本管| 51精品视频一区二区三区| 成人国产一区二区三区精品| 国产一区高清在线| 亚洲国产日韩在线一区模特| 亚洲精品老司机| 久久一夜天堂av一区二区三区| 91在线观看一区二区| 国产精品88888| 中文字幕在线观看不卡视频| 国产精品你懂的在线欣赏| 欧美一区二区视频在线观看 | 日韩视频中午一区| 一本大道av一区二区在线播放| 国产成人午夜视频| 人人超碰91尤物精品国产| 亚洲国产一二三| 综合在线观看色| 国产精品国产a级| 久久久国产精华| 国产欧美日韩在线观看| 精品成人私密视频| 久久久美女毛片| 精品美女被调教视频大全网站| 精品久久久久久久久久久久久久久| 欧美久久久久中文字幕| 成人高清视频在线| 成人av午夜电影| 成人性视频免费网站| 成人91在线观看| av动漫一区二区| 91在线无精精品入口| 成人福利电影精品一区二区在线观看| 亚洲欧美综合在线精品| 精品国产乱码久久久久久1区2区| 日韩欧美一级片| 91精品国产91久久久久久一区二区 | www.在线成人| 国产精品996| 国产成人在线看| 99久久国产综合精品色伊| 成人不卡免费av| 久99久精品视频免费观看| 精彩视频一区二区三区| 极品销魂美女一区二区三区| 成人中文字幕在线| 不卡电影免费在线播放一区| 欧美综合亚洲图片综合区| 色狠狠色噜噜噜综合网| 日韩一区二区在线播放| 精品国产免费人成电影在线观看四季 | 成人av片在线观看| 日本黄色一区二区| 91久久香蕉国产日韩欧美9色| 51久久夜色精品国产麻豆| 日韩欧美视频在线| 日韩一区在线播放| 亚洲乱码国产乱码精品精小说| 日韩成人一区二区三区在线观看| 蜜臀久久99精品久久久久宅男 | 亚洲日本护士毛茸茸| 亚洲午夜在线观看视频在线| 精品一区二区三区免费播放| 国产精品一区在线| 欧美色视频在线| 欧美一级二级在线观看| 国产三区在线成人av| 国产精品视频一二三| 三级一区在线视频先锋| 国产一区二区三区黄视频 | 色先锋aa成人| 精品播放一区二区| 中文字幕制服丝袜一区二区三区 | 国产日韩精品一区二区三区| 亚洲欧美日韩一区二区三区在线观看| 不卡的av在线| 欧美色视频在线| 中文乱码免费一区二区| 婷婷成人综合网| 99精品一区二区三区| 欧美精品一二三| 国产精品高潮呻吟久久| 美女脱光内衣内裤视频久久网站 | 最新国产成人在线观看| 亚洲一区二区三区视频在线播放| 国产成人8x视频一区二区| 在线精品观看国产| 中文字幕av一区 二区| 香蕉影视欧美成人| 成人小视频在线| 日韩欧美精品三级| 亚洲色图在线播放| 激情五月激情综合网| 国产99一区视频免费| 日韩欧美一级二级三级| 国产精品美女一区二区三区| 欧美a级理论片| 91色视频在线| 综合色中文字幕| 国产在线精品国自产拍免费| 911精品产国品一二三产区| 中文字幕中文乱码欧美一区二区| 国产不卡视频一区| 欧美日韩一本到| 亚洲综合成人在线| 成人av综合一区| 国产亚洲欧美日韩俺去了| 全国精品久久少妇| 欧美日韩国产经典色站一区二区三区 | 经典三级在线一区| 日韩视频免费观看高清完整版在线观看 | 国产精品网站在线| 亚洲精品福利视频网站| 一本大道久久a久久精二百| 国产欧美一区二区在线| 狠狠色丁香久久婷婷综| 日韩一卡二卡三卡四卡| 日韩黄色一级片| 欧洲生活片亚洲生活在线观看| 国产精品国产自产拍高清av王其| 国产91精品免费| 欧美精品一区二区三区久久久| 国产资源精品在线观看| 日韩免费电影网站| 国产一区二区精品久久99| 精品欧美一区二区久久 | 欧美写真视频网站| 亚洲国产中文字幕| 欧美少妇性性性| 三级不卡在线观看| 欧美日韩性生活| 黄色精品一二区| 免费欧美高清视频| 欧美高清视频一二三区| 日韩主播视频在线| 777亚洲妇女| 精品在线免费视频| 国产精品区一区二区三区| 成人av电影免费观看| 亚洲二区在线视频| 337p亚洲精品色噜噜狠狠|