亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? tmd2

?? 求矩陣奇異分解svd算法
??
字號(hào):
- Introduction        tms2:   sparse svd via trace minimization using A'A eigensystems.	tms2.c is an ANSI-C code designed to find several of the largest        eigenvalues and eigenvectors of a real symmetric positive definite	matrix B.  The matrix B is assumed to be of the form             B = (alpha*alpha)*I -A'A,  where A is nrow by ncol (nrow>>ncol)                                       and sparse,        and alpha is an upper bound for the largest singular value of        the matrix A. Hence, the singular triplets of A are computed as        the eigenpairs of B.  If lambda is an eigenvalue of B, then        sqrt(lambda-alpha*alpha) is a singular value of A.  The eigenvectors        of B correspond to the right singular vectors of A only.        The left singular vectors of A are then determined by                          u = 1/sigma A*v,        where {u,sigma,v} is a singular triplet of A.        This implementation is discussed in "Multiprocessor        Sparse SVD Algorithms and Applications", Ph.D. Thesis by M. Berry,        University of Illinois at Urbana-Champaign, October 1990.  This        version uses Ritz-shifting and (optionally) Chebyshev polynomials        to accelerate convergence.        This is a parallel method which permits concurrent iterations of the        classical Conjugate Gradient method.  The loops which can be        parallelized are the for-loops containing calls to subroutines        cgt() and cgts().- Calling sequence	The calling sequence for procedure tsvd2 is        long tsvd2(FILE *fp_out1, long n, long p, long s, long job,                  double tol, double red, double *sig, long maxi,                  long *mem, long *itcgt, long *titer, double *time,                  double *res, long *mxv, double **work1, double **work2,                  double **work3, double **work4, double **work5,                  double **y, long **iwork, long *lwork, long maxd)        The user specifies as part of the parameter list:                 fp_out1         ... a pointer to output file {FILE *}.        n               ... order of matrix B for SVD problem {long}.                            (n must not be greater than ncol, assuming                            A is nrow by ncol with nrow >> ncol.)        p               ... number of desired singular triplets (largest)                            of matrix A. {long}.         s               ... dimension of initial subspace {long}.                            (s should be greater than p; s=2*p is usually                            safe but more optimal results may be obtained                            if s is closer to p)        job             ... acceleration strategy switch {long}.                            job = 0, no acceleration is used.                            job = 1, ritz-shifting   is used.                            job = 2, Chebyshev polynomials and                                      Ritz-shifting used.        maxi            ... maximum number of trace minimization steps                            allowed {long}.        tol             ... user-supplied tolerance for residuals of                            B-eigenpairs which approximate A-singular                            triplets {double}.        red             ... user-supplied tolerance for residual reduction                            to invoke Ritz-shifting (job = 1 or 2) {double}.        lwork           ... one-dimensional array of length s used for                            for logic tests (values are 0 or 1).	         The following are work arrays malloc'ed within tsvd2:                            double **work1, double **work2,                            double **work3, double **work4,                             double **work5, double **y                            long **iwork	tsvd2 returns via its parameter list the following items:	         ierr            ... error flag for job parameter {long}.                            ierr=99, input parameter invalid.                            ierr= 0, input parameter   valid.        mem             ... estimate (in bytes) of memory required {long}.        maxd            ... maximum polynomial degree used (job =2).        mxv             ... 1-dim. array of length 3 containing matrix                            times vector counts {long}.                            mxv[0] = number of A *x. (x is a vector)                            mxv[1] = number of A'*x.                             mxv[2] = mxv[0] + mxv[1].        sig             ... 1-dim. array of length s containing the desired                            singular values of A {double}.        y               ... 2-dim. array containing the corresponding                            left and right singular vectors of matrix A                            {double}.  Each column of y stores                            the left singular vector in the first nrow                            elements and the right singular vector in the                            last ncol elements, where nrow is the number of                            rows of A and ncol is the number of columns of A.        titer           ... 1-dim. array of length s containing the number                            of trace min. steps required for each singular                            triplet of a {long}.        itcgt           ... 1-dim. array of length s containing the number                            of Conjugate Gradient steps taken for each                             singular triplet approximation of A {long}.        time            ... 1-dim. array of length 5 specifying timing                            breakdown (user cpu seconds) {double}.                            time[0] = Gram-Schmidt orthogonalization.                            time[1] = spectral decomposition.                            time[2] = convergence criteria.                            time[3] = Conjugate Gradient method.                            time[4] = total time (sum of the above).        res             ... 1-dim. array of length s containing the 2-norms                            of residuals for the singular triplets of A                            {double}.- User-supplied routines        For tms2.c, the user must specify multiplication by matrices        B, A, and A' (subroutines opb, opa, and opat, respectively).        The specification of opb should look something like         void opb(long n, double *x, double *y, double shift)        so that opb takes a vector x and returns y = B*x, where        B = [(alpha*alpha-shift)*I - A'A].  Here, alpha is an        upper bound for the largest singular value of A,        and shift is an approximate squared singular value of A.        The specification of opa should look something like                  void opa(double *x, double *y)        so that opa  takes an n by 1 vector x and returns the m by 1        vector y = A*x, where A is m by n (m >> n).        The specification of opat should look something like                  void opat(double *x, double *y)        so that opat takes an m by 1 vector x and returns the n by 1        vector y = A'*x, where A is m by n (m >> n).	In tms2.c, we use the Harwell-Boeing sparse matrix format for	accessing elements of the sparse matrix A and its transpose (A').        Other sparse matrix formats can be used, of course.- Information        Please address all questions, comments, or corrections to:        M. W. Berry        Department of Computer Science        University of Tennessee        107 Ayres Hall        Knoxville, TN  37996-1301        email: berry@cs.utk.edu        phone: (615) 974-5067- File descriptions       tms2.c requires the include files tmsc.h and tmsg.h for       compilation.  Constants are defined in tmsc.h and all       global variables are defined in tmsg.h.  The input and       output files associated with tms2.c are listed below.             Code           Input         Output            ------      ------------    ---------            tms2.c      tmp2, matrix    tmo2,tmv2       The binary output file tmv2 containing approximate left       and right singular vectors will be created by tms2.c       if it does not already exist.  If you are running on       a Unix-based workstation you should uncomment the line                 /*   #define  UNIX_CREAT */       in the declarations prior to main() in tms2.c.       UNIX_CREAT specifies the use of the UNIX "creat" system       routine with the permissions defined by the PERMS constant                  #define PERMS 0664       You may adjust PERMS for the desired permissions on the       tmv2 file (default is Read/Write for user and group,       and Read for others).  Subsequent runs will be able to       open and overwrite these files with the default permissions.       tms2.c obtains its parameters specifying the       sparse SVD problem to be solved from the input file       tmp2. This parameter file contains the single line        <name>   p    s    job   tol    red    v    maxi       where        <name>     is the name of the data set containing nonzeros of A.        p          is an integer specifying the number of desired                   triplets;        s          is an integer specifying the subspace dimension to use.        job        is an integer specifying the type of acceleration to be                   used:                           job := 0, no acceleration used;                         job := 1, Ritz-shifting used;                         job := 2, Chebyshev polynomials                                   and Ritz-shifting used;        tol        is a double specifying the residual tolerance for                    approximated singular triplets of A.        red        is a double specifying the residual reduction factor                   to inititate Ritz-shifting (when job = 1 or 2).        v          contains the string TRUE or FALSE to indicate when                   singular triplets are needed (TRUE) and when only                   singular values are needed (FALSE);        maxi       is an integer specifying the maximum number of iterations.        If the parameter "v" from tmp2 is set to "TRUE",        the unformatted output file tmv2 will contain the approximate        singular vectors written in the order u[1], v[1], u[2], v[2],        ..., u[p], v[p].  Here u[i] and v[i] denote the left and right        singular vectors, respectively, corresponding to the i-th        approximate singular value of A.        tms2.c is primarily designed to approximate the p-largest        singular triplets of A.  Users interested in the p-smallest        singular triplets via trace minimization should define B=A'A        rather than (alpha*alpha)*I-A'A, and modify opb accordingly.- Sparse matrix format        tms2.c is designed to read input matrices that are stored        in the Harwell-Boeing sparse matrix format.  The nonzeros        of such matrices are stored in a compressed column-oriented        format.  The row indices and corresponding nonzero values        are stored by columns with a column start index array        whose entries contain pointers to the nonzero starting each        column.  tms2.c reads the sparse matrix data from the input        file called "matrix".        Each input file "matrix" should begin with a four-line header        record followed by three more records containing, in order,         the column-start pointers, the row indices, and the nonzero        numerical values.        The first line of the header consists of a 72-character title        and an 8-character key by which the matrices are referenced.        The second line can be used for comments or to indicate record        length for each index or value array.  Although this line is         generally ignored, A CHARACTER MUST BE PLACED ON THAT LINE.        The third line contains a three-character string denoting the        matrix type and the three integers specifying the number of rows,        columns, and nonzeros.  The fourth line which usually contains        input format for Fortran-77 I/O is ignored by our ANSI-C code.        The exact format is		"%72c %*s %*s %*s %d %d %d %*d"	for the first three lines of the header,		line 1      <title>         <key>		 	(col.  1 - 72) (col. 73 - 80)		line 2   <string>		line 3   <matrix type> nrow ncol nnzero 	and 		"%*s %*s %*s %*s"	for the last line of the header.		line 4   <string1> <string2> <string3> <string4>        Even though only the title and the integers specifying the        number of rows, columns, and nonzero elements are read, other        strings of input must be present in indicated positions.        Otherwise, the format of the "fscanf" statements must be         changed accordingly.- Reference         Sameh, A. H. and  Wisniewski, J. A., A trace minimization strategy        for the generalized eigevalue problem, SIAM J. Numer. Anal. 19:6,        1243-1259, 1982.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美变态tickling挠脚心| 91精品免费在线| 日本视频一区二区| 国产精品国模大尺度视频| 欧美人与z0zoxxxx视频| 国产成人av电影在线观看| 亚洲成人动漫av| 国产精品久久久久影院亚瑟 | 99久久精品国产麻豆演员表| 亚洲电影在线免费观看| 国产精品沙发午睡系列990531| 欧美放荡的少妇| 91免费看`日韩一区二区| 国产在线播放一区三区四| 亚洲成人激情社区| 亚洲精品免费看| 中文字幕乱码日本亚洲一区二区| 日韩欧美一级精品久久| 欧美在线免费播放| 91在线一区二区| 高潮精品一区videoshd| 久久精品久久综合| 午夜久久久久久久久久一区二区| 亚洲视频1区2区| 欧美国产一区在线| 久久影院电视剧免费观看| 欧美一级欧美三级在线观看| 欧美怡红院视频| 91成人在线精品| 色综合久久久久综合| 成人精品鲁一区一区二区| 国精产品一区一区三区mba视频 | 麻豆国产欧美一区二区三区| 亚洲小说春色综合另类电影| 亚洲人成在线观看一区二区| 国产丝袜在线精品| 国产亚洲欧洲997久久综合| 欧美一二三在线| 欧美一级专区免费大片| 宅男噜噜噜66一区二区66| 欧美日韩一区国产| 欧美乱妇一区二区三区不卡视频| 欧美中文字幕一二三区视频| 欧美三级日韩三级| 欧美日韩国产综合草草| 欧美日本国产一区| 日韩一区二区精品在线观看| 日韩欧美精品在线视频| 日韩欧美中文字幕公布| 精品国产区一区| 国产欧美一区二区在线观看| 日本一区二区三区电影| 国产精品久久久久久久久久免费看 | 亚洲男同1069视频| 亚洲精品国产无套在线观| 一区二区三区精品久久久| 亚洲亚洲精品在线观看| 免费精品99久久国产综合精品| 免费成人在线观看视频| 国产一区不卡在线| 不卡一区二区中文字幕| 91丨porny丨最新| 欧美手机在线视频| 日韩欧美一二区| 欧美激情自拍偷拍| 亚洲欧洲中文日韩久久av乱码| 亚洲一区二区三区小说| 久久国产视频网| 成人三级在线视频| 在线精品视频免费播放| 91精品国产色综合久久不卡蜜臀| www国产成人免费观看视频 深夜成人网 | 972aa.com艺术欧美| 欧美男男青年gay1069videost | 九九精品一区二区| 成人久久视频在线观看| 欧美日韩视频在线第一区 | 一级日本不卡的影视| 日韩电影免费在线观看网站| 国产成人av自拍| 欧美性大战久久久| 2020国产精品自拍| 一区二区三区四区在线播放| 蜜臀精品久久久久久蜜臀| 粉嫩aⅴ一区二区三区四区| 在线观看一区二区视频| 久久―日本道色综合久久| 最新日韩av在线| 免费精品视频在线| 色综合一区二区| 日韩欧美一级特黄在线播放| 亚洲色欲色欲www| 久久超碰97中文字幕| 91国产视频在线观看| 国产无遮挡一区二区三区毛片日本| 伊人性伊人情综合网| 国产综合久久久久久鬼色| 色综合久久综合中文综合网| 精品欧美乱码久久久久久1区2区 | 日韩电影一区二区三区四区| 成人性生交大片免费看中文| 9191久久久久久久久久久| 欧美激情艳妇裸体舞| 轻轻草成人在线| 91精品福利视频| 中文字幕第一区第二区| 欧美a级理论片| 91久久精品网| 综合久久久久综合| 国产一级精品在线| 日韩一区二区三区在线观看| 自拍视频在线观看一区二区| 国内外成人在线视频| 欧美裸体bbwbbwbbw| 成人欧美一区二区三区白人| 国产资源在线一区| 欧美一级爆毛片| 日韩激情中文字幕| 欧美在线观看视频在线| 国产精品成人免费精品自在线观看| 久久精品国产99国产| 91精品在线免费| 性做久久久久久免费观看欧美| 91蝌蚪porny| 国产精品毛片大码女人| 国产福利一区在线| 久久久99免费| 国产在线精品免费| 久久日韩精品一区二区五区| 久久9热精品视频| 日韩欧美成人一区二区| 日本一道高清亚洲日美韩| 欧美伊人久久久久久久久影院| 亚洲精品免费在线观看| 在线一区二区三区四区| 亚洲欧美日韩中文播放| 91理论电影在线观看| 亚洲欧洲美洲综合色网| 成人黄色在线视频| 中文字幕不卡的av| 99国产一区二区三精品乱码| 亚洲欧洲另类国产综合| 91在线精品秘密一区二区| 亚洲视频香蕉人妖| 在线观看91视频| 视频一区在线播放| 日韩三级在线观看| 久久99精品网久久| 国产欧美日韩视频一区二区| 岛国精品在线观看| 成人欧美一区二区三区白人| 色婷婷综合久久久久中文| 一区二区三区国产| 欧美肥胖老妇做爰| 久久av资源站| 国产精品第四页| 91国在线观看| 免费成人结看片| 久久久亚洲精品石原莉奈| eeuss国产一区二区三区| 亚洲精品成人精品456| 欧美高清性hdvideosex| 精品一区二区三区av| 国产日产欧美精品一区二区三区| 91小视频免费观看| 亚洲成av人片在www色猫咪| 日韩欧美不卡在线观看视频| 国产suv精品一区二区6| 亚洲人亚洲人成电影网站色| 精品视频全国免费看| 蜜桃视频在线一区| 欧美激情一区二区| 欧美日本一区二区在线观看| 国产一区二三区| 亚洲欧美aⅴ...| 日韩免费高清电影| 99re这里都是精品| 日韩精品成人一区二区三区| 国产亚洲欧洲997久久综合| 91麻豆国产香蕉久久精品| 日韩国产在线一| 亚洲国产精品传媒在线观看| 欧美系列亚洲系列| 国产精品99久久久久久宅男| 一区二区视频免费在线观看| 欧美一级高清片在线观看| 99精品热视频| 久久99精品久久久久久国产越南| 亚洲色图丝袜美腿| 久久只精品国产| 欧美调教femdomvk| 国产精品77777竹菊影视小说| 亚洲综合成人在线视频| 久久精品视频一区二区三区| 欧美四级电影在线观看| 成人久久18免费网站麻豆| 老司机午夜精品99久久| 亚洲综合自拍偷拍| 国产精品天美传媒| 欧美成人猛片aaaaaaa|