?? qsortalgorithm.java
字號:
package com.zmc.ebook.maker;
/**
*
* @(#) *.java 1.0 05/04/2000
* Copyright (c) 1999 EChannel R&D. All Rights Reserved.
*
*
* @version 1.0 05/04/2000
* @author ZhongMingChang
*
*/
public class QSortAlgorithm {
//the int arry contain the finalposition of the sorted array
private int[] finalPosition;
/**
* QSortAlgorithm constructor comment.
*/
public QSortAlgorithm() {
super();
}
/**
*
* This method was created by ZhongMingChang.
* 05/04/2000
*
*
* @return int
* @param s1 java.lang.String
* @param s2 java.lang.String
*/
private int compare(String s1, String s2) {
try{
if( s1 == null && s2 == null)
return 0;
else if( s1 == null && s2 != null)
{
return "null".compareTo( s2);
}
else if( s1!=null && s2 == null)
{
return s1.compareTo( "null");
}
return s1.compareTo( s2 );
}catch(Exception e)
{
System.out.println( s1 + s2 + e);
return 0;
}
}
/**
*
* This method was created by ZhongMingChang.
* 05/04/2000
*
*
* @return int[]
*/
public int[] getFinalPosition() {
return finalPosition;
}
/** This is a generic version of C.A.R Hoare's Quick Sort
* algorithm. This will handle arrays that are already
* sorted, and arrays with duplicate keys.<BR>
*
* If you think of a one dimensional array as going from
* the lowest index on the left to the highest index on the right
* then the parameters to this function are lowest index or
* left and highest index or right. The first time you call
* this function it will be with the parameters 0, a.length - 1.
*
* @param a an integer array
* @param lo0 left boundary of array partition
* @param hi0 right boundary of array partition
*/
private void QuickSort(int a[], int lo0, int hi0) throws Exception
{
int lo = lo0;
int hi = hi0;
int mid;
if ( hi0 > lo0)
{
/* Arbitrarily establishing partition element as the midpoint of
* the array.
*/
mid = a[ ( lo0 + hi0 ) / 2 ];
// loop through the array until indices cross
while( lo <= hi )
{
/* find the first element that is greater than or equal to
* the partition element starting from the left Index.
*/
while( ( lo < hi0 ) && ( a[lo] < mid ))
++lo;
/* find an element that is smaller than or equal to
* the partition element starting from the right Index.
*/
while( ( hi > lo0 ) && ( a[hi] > mid ))
--hi;
// if the indexes have not crossed, swap
if( lo <= hi )
{
swap(a, lo, hi);
++lo;
--hi;
}
}
/* If the right index has not reached the left side of array
* must now sort the left partition.
*/
if( lo0 < hi )
QuickSort( a, lo0, hi );
/* If the left index has not reached the right side of array
* must now sort the right partition.
*/
if( lo < hi0 )
QuickSort( a, lo, hi0 );
}
}
/** This is a generic version of C.A.R Hoare's Quick Sort
* algorithm. This will handle arrays that are already
* sorted, and arrays with duplicate keys.<BR>
*
* If you think of a one dimensional array as going from
* the lowest index on the left to the highest index on the right
* then the parameters to this function are lowest index or
* left and highest index or right. The first time you call
* this function it will be with the parameters 0, a.length - 1.
*
* @param a an integer array
* @param lo0 left boundary of array partition
* @param hi0 right boundary of array partition
*/
private void QuickSort(String a[], int lo0, int hi0) throws Exception
{
int lo = lo0;
int hi = hi0;
String mid;
if ( hi0 > lo0)
{
/* Arbitrarily establishing partition element as the midpoint of
* the array.
*/
mid = a[ ( lo0 + hi0 ) / 2 ];
// loop through the array until indices cross
while( lo <= hi )
{
/* find the first element that is greater than or equal to
* the partition element starting from the left Index.
*/
while( ( lo < hi0 ) && compare( a[lo], mid )<0 ) //a[lo]<mid
++lo;
/* find an element that is smaller than or equal to
* the partition element starting from the right Index.
*/
while( ( hi > lo0 ) && compare(a[hi], mid) > 0) // ( a[hi] > mid ))
--hi;
// if the indexes have not crossed, swap
if( lo <= hi )
{
swap(a, lo, hi);
++lo;
--hi;
}
}
/* If the right index has not reached the left side of array
* must now sort the left partition.
*/
if( lo0 < hi )
QuickSort( a, lo0, hi );
/* If the left index has not reached the right side of array
* must now sort the right partition.
*/
if( lo < hi0 )
QuickSort( a, lo, hi0 );
}
}
public void sort(int a[]) throws Exception
{
finalPosition = new int[a.length];
for( int i=0; i<a.length; i++)
finalPosition[i] = i;
QuickSort(a, 0, a.length - 1);
}
public void sort(String a[]) throws Exception
{
finalPosition = new int[a.length];
for( int i=0; i<a.length; i++)
finalPosition[i] = i;
QuickSort(a, 0, a.length - 1);
}
private void swap(int a[], int i, int j)
{
int T;
T = a[i];
a[i] = a[j];
a[j] = T;
swapPosition(i, j);
}
private void swap(String a[], int i, int j)
{
String T;
T = a[i];
a[i] = a[j];
a[j] = T;
swapPosition(i, j);
}
private void swapPosition(int i, int j)
{
int T;
T = finalPosition[i];
finalPosition[i] = finalPosition[j];
finalPosition[j] = T;
}
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -