亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? an introduction to wavelets historical perspective.htm

?? 從IEEE收集的小波分析入門的資料
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0045)http://www.amara.com/IEEEwave/IW_history.html -->
<!-- Amara Graps' IEEE Paper: An Intro to Wavelets --><HTML><HEAD><TITLE>An Introduction to Wavelets: Historical Perspective</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312"><LINK rev=made 
href="mailto:amara@amara.com"><!-- Make Background color GhostWhite and all links color DarkBlue-->
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY link=#00008b bgColor=#f8f8ff>
<BLOCKQUOTE>
  <HR align=center noShade SIZE=2>

  <P>
  <H2><FONT size=8>H</FONT>istorical <FONT size=6>P</FONT>erspective</H2>
  <P>
  <HR align=center noShade SIZE=2>

  <P>In the history of mathematics, wavelet analysis shows many different 
  origins <A href="http://www.amara.com/IEEEwave/IW_ref.html#two">(2)</A>. Much 
  of the work was performed in the 1930s, and, at the time, the separate efforts 
  did not appear to be parts of a coherent theory. 
  <H3>Pre-1930</H3>Before 1930, the main branch of mathematics leading to 
  wavelets began with Joseph Fourier (1807) with his theories of frequency 
  analysis, now often referred to as Fourier synthesis. He asserted that any 
  <IMG alt=2pi 
  src="An Introduction to Wavelets Historical Perspective.files/IW_eq2pi.gif" 
  align=top> -periodic function <EM>f(x)</EM> is the sum 
  <P>
  <UL>
    <UL><IMG alt=eq1 
      src="An Introduction to Wavelets Historical Perspective.files/IW_eq1.gif" 
      align=middle></UL></UL>
  <P>of its Fourier series. The coefficients <IMG alt=a_0 
  src="An Introduction to Wavelets Historical Perspective.files/IW_eqa0.gif" 
  align=top>, <IMG alt=a_k 
  src="An Introduction to Wavelets Historical Perspective.files/IW_eqak.gif" 
  align=top>, and <IMG alt=b_k 
  src="An Introduction to Wavelets Historical Perspective.files/IW_eqbk.gif" 
  align=top> are calculated by 
  <P><IMG alt=eq2 
  src="An Introduction to Wavelets Historical Perspective.files/IW_eq2.gif" 
  align=middle> 
  <P>Fourier's assertion played an essential role in the evolution of the ideas 
  mathematicians had about the functions. He opened up the door to a new 
  functional universe. 
  <P>After 1807, by exploring the meaning of functions, Fourier series 
  convergence, and orthogonal systems, mathematicians gradually were led from 
  their previous notion of <EM>frequency analysis</EM> to the notion of 
  <EM>scale analysis.</EM> That is, analyzing <EM>f(x)</EM> by creating 
  mathematical structures that vary in scale. How? Construct a function, shift 
  it by some amount, and change its scale. Apply that structure in approximating 
  a signal. Now repeat the procedure. Take that basic structure, shift it, and 
  scale it again. Apply it to the same signal to get a new approximation. And so 
  on. It turns out that this sort of scale analysis is less sensitive to noise 
  because it measures the average fluctuations of the signal at different 
  scales. 
  <P>The first mention of wavelets appeared in an appendix to the thesis of A. 
  Haar (1909). One property of the Haar wavelet is that it has <EM>compact 
  support,</EM> which means that it vanishes outside of a finite interval. 
  Unfortunately, Haar wavelets are not continuously differentiable which 
  somewhat limits their applications. 
  <H3>The 1930s</H3>In the 1930s, several groups working independently 
  researched the representation of functions using <EM>scale-varying basis 
  functions.</EM> Understanding the concepts of basis functions and 
  scale-varying basis functions is key to understanding wavelets; the sidebar <A 
  href="http://www.amara.com/IEEEwave/IW_basis.html">next</A> provides a short 
  detour lesson for those interested. 
  <P>By using a scale-varying basis function called the Haar basis function 
  (more on this later) Paul Levy, a 1930s physicist, investigated Brownian 
  motion, a type of random signal <A 
  href="http://www.amara.com/IEEEwave/IW_ref.html#two">(2)</A>. He found the 
  Haar basis function superior to the Fourier basis functions for studying small 
  complicated details in the Brownian motion. 
  <P>Another 1930s research effort by Littlewood, Paley, and Stein involved 
  computing the energy of a function <EM>f(x)</EM>: 
  <P>
  <UL>
    <UL><IMG alt=eq3 
      src="An Introduction to Wavelets Historical Perspective.files/IW_eq3.gif" 
      align=top></UL></UL>
  <P>The computation produced different results if the energy was concentrated 
  around a few points or distributed over a larger interval. This result 
  disturbed the scientists because it indicated that energy might not be 
  conserved. The researchers discovered a function that can vary in scale 
  <EM>and</EM> can conserve energy when computing the functional energy. Their 
  work provided David Marr with an effective algorithm for numerical image 
  processing using wavelets in the early 1980s. 
  <P>
  <H3>1960-1980</H3>Between 1960 and 1980, the mathematicians Guido Weiss and 
  Ronald R. Coifman studied the simplest elements of a function space, called 
  <EM>atoms,</EM> with the goal of finding the atoms for a common function and 
  finding the "assembly rules" that allow the reconstruction of all the elements 
  of the function space using these atoms. In 1980, Grossman and Morlet, a 
  physicist and an engineer, broadly defined wavelets in the context of quantum 
  physics. These two researchers provided a way of thinking for wavelets based 
  on physical intuition. 
  <H3>Post-1980</H3>In 1985, Stephane Mallat gave wavelets an additional 
  jump-start through his work in digital signal processing. He discovered some 
  relationships between quadrature mirror filters, pyramid algorithms, and 
  orthonormal wavelet bases (more on these later). Inspired in part by these 
  results, Y. Meyer constructed the first non-trivial wavelets. Unlike the Haar 
  wavelets, the Meyer wavelets are continuously differentiable; however they do 
  not have compact support. A couple of years later, Ingrid Daubechies used 
  Mallat's work to construct a set of wavelet orthonormal basis functions that 
  are perhaps the most elegant, and have become the cornerstone of wavelet 
  applications today. 
  <P>
  <HR align=center noShade SIZE=2>

  <P><B><A href="http://www.amara.com/index.html">[Home]</A> <A 
  href="http://www.amara.com/current/wavelet.html">[Wavelet Page]</A> <A 
  href="http://www.amara.com/IEEEwave/IEEEwavelet.html#contents">[Contents]</A> 
  <A href="http://www.amara.com/IEEEwave/IW_overview.html">[Previous]</A> <A 
  href="http://www.amara.com/IEEEwave/IW_basis.html">[Next]</A> </B>
  <P>
  <HR align=center noShade SIZE=2>

  <P>
  <H5>You may <A 
  href="http://www.amara.com/ftpstuff/IEEEwavelet.ps.gz">download</A> this 
  paper: "Introduction to Wavelets" </H5>
  <P>
  <HR align=center noShade SIZE=2>

  <CENTER>
  <TABLE>
    <TBODY>
    <TR><!-- Miscellaneous Contact Information -->
      <TD><BASEFONT size=2>
        <ADDRESS>Last Modified by <A href="mailto:amara@amara.com">Amara 
        Graps</A> on 8 October 1997.<BR>&copy; Copyright Amara Graps, 1995-1997. 
        </ADDRESS></BASEFONT></TD></TR></TBODY></TABLE></CENTER></BLOCKQUOTE></BODY></HTML>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品一区二区成人精品| 精品综合久久久久久8888| 久久久久久久精| 69久久夜色精品国产69蝌蚪网| 欧美在线观看18| 欧美性欧美巨大黑白大战| 欧美日韩国产高清一区| 欧美酷刑日本凌虐凌虐| 欧美一区二区三区在线视频| 亚洲精品在线网站| 国产精品青草综合久久久久99| 国产精品美女久久久久aⅴ国产馆| 国产精品网站在线观看| 亚洲麻豆国产自偷在线| 午夜a成v人精品| 国产成人精品三级| 色综合一区二区三区| 欧美日韩成人综合在线一区二区| 7777精品久久久大香线蕉| 精品国产电影一区二区| 国产精品传媒入口麻豆| 日韩va欧美va亚洲va久久| 久久精品国产99国产| 国产激情一区二区三区桃花岛亚洲| 国产成人午夜电影网| 91久久精品国产91性色tv| 51久久夜色精品国产麻豆| 国产欧美综合色| 亚洲123区在线观看| 国产综合成人久久大片91| 91在线视频观看| 日韩一区二区在线播放| 国产精品美女一区二区在线观看| 精品一区二区三区不卡| 91免费看`日韩一区二区| 欧美一区三区二区| 综合av第一页| 精品一区二区三区欧美| 91精品办公室少妇高潮对白| 久久综合999| 亚洲国产精品久久艾草纯爱 | 国产精品国产精品国产专区不片| 亚洲成av人片在线| 波波电影院一区二区三区| 欧美一级免费观看| 亚洲精品水蜜桃| 丁香啪啪综合成人亚洲小说| 欧美精品第一页| 亚洲乱码中文字幕综合| 国产成人精品免费看| 国产精品久久久一区麻豆最新章节| 亚洲超碰97人人做人人爱| 成人天堂资源www在线| 日韩一区二区免费视频| 亚洲福利视频三区| 色综合久久综合中文综合网| 国产日产欧美一区二区三区| 五月婷婷激情综合网| 在线观看91精品国产入口| 国产精品白丝在线| 成人精品在线视频观看| 久久久国产一区二区三区四区小说| 免费观看在线综合色| 51午夜精品国产| 免费看日韩精品| 日韩视频一区二区在线观看| 亚洲第一精品在线| 欧美日韩久久久久久| 亚洲一级二级三级| 精品视频在线看| 加勒比av一区二区| 日韩欧美在线一区二区三区| 日韩激情视频网站| 555夜色666亚洲国产免| 麻豆精品视频在线观看免费| 91精品国产综合久久精品图片| 丝袜a∨在线一区二区三区不卡| 欧美三级日韩三级国产三级| 亚洲综合在线观看视频| 欧美自拍偷拍一区| 亚洲h在线观看| 91精品国产综合久久久蜜臀粉嫩| 亚洲成人自拍偷拍| 日韩亚洲欧美成人一区| 国产在线看一区| 中文字幕一区二区日韩精品绯色| 91老司机福利 在线| 一区二区三区在线不卡| 欧美理论电影在线| 国内外成人在线视频| 亚洲卡通动漫在线| 欧美日韩久久久| 国产一区二区三区综合| 亚洲视频一区二区在线观看| 欧美影院精品一区| 久久不见久久见免费视频1| 久久久777精品电影网影网| 91婷婷韩国欧美一区二区| 亚洲大片精品永久免费| 久久免费的精品国产v∧| 91片黄在线观看| 麻豆一区二区三| 成人欧美一区二区三区小说| 欧美日韩国产经典色站一区二区三区| 久久精品国产一区二区三| 国产精品美女久久久久aⅴ国产馆| 色婷婷综合久久久久中文 | 国产成人午夜电影网| 一区二区高清免费观看影视大全| 91麻豆精品久久久久蜜臀 | 蜜臀久久久久久久| 国产目拍亚洲精品99久久精品| 色婷婷精品大在线视频| 老司机一区二区| 亚洲欧美另类久久久精品| 精品国产乱码久久久久久免费| 94-欧美-setu| 国产精品一区二区你懂的| 亚洲一区二区精品视频| 亚洲国产成人一区二区三区| 欧美精品三级在线观看| 成人免费高清在线| 免费在线观看视频一区| 亚洲国产另类av| 国产精品国产馆在线真实露脸| 精品国内二区三区| 欧美日韩精品三区| 色综合久久中文综合久久牛| 国产精品一区二区黑丝| 蜜臀av性久久久久蜜臀aⅴ| 国内精品久久久久影院色 | 国产在线精品视频| 午夜久久福利影院| 亚洲一区二区免费视频| 1区2区3区精品视频| 国产精品女主播av| 337p日本欧洲亚洲大胆色噜噜| 91麻豆精品国产自产在线观看一区| 在线一区二区观看| jlzzjlzz国产精品久久| 国产成人精品免费| 国产91在线|亚洲| 国产乱人伦偷精品视频不卡| 免费成人av资源网| 久久99久久99小草精品免视看| 亚洲国产日韩a在线播放| 有码一区二区三区| 亚洲制服丝袜av| 亚洲国产aⅴ成人精品无吗| 伊人色综合久久天天人手人婷| 国产精品久久三区| 亚洲欧美在线观看| 视频一区二区中文字幕| 午夜伊人狠狠久久| 天堂蜜桃91精品| 蜜桃在线一区二区三区| 国产一区二区伦理| 国产不卡在线一区| 91免费国产在线| 欧美综合色免费| 日韩三级电影网址| 26uuu亚洲综合色欧美 | 日本韩国视频一区二区| 在线视频国内自拍亚洲视频| 在线观看视频欧美| 91精品国产免费久久综合| 日韩精品资源二区在线| 久久午夜羞羞影院免费观看| 国产精品久久久久久一区二区三区 | 久久不见久久见免费视频7| 国产毛片一区二区| 日韩一区二区三区在线观看| 欧美一区二区视频观看视频| 国产亚洲一区字幕| 最新高清无码专区| 日韩成人一区二区| 国产精品一级黄| 91福利在线观看| 欧美一级片免费看| 国产精品毛片无遮挡高清| 亚洲午夜久久久久久久久久久 | 色综合久久99| 3d动漫精品啪啪1区2区免费 | 蜜臀精品一区二区三区在线观看| 国产精品1024| 欧美肥大bbwbbw高潮| 久久久久久久久久久久久久久99 | 日韩一级免费一区| 久久久久久久久久久久久女国产乱 | 国产免费成人在线视频| 亚洲二区在线观看| 国产99久久久国产精品潘金| 欧美在线色视频| 欧美韩国一区二区| 蜜桃视频在线观看一区二区| 色综合中文综合网| 91蜜桃视频在线| 欧美精品一区二区久久婷婷| 国产一区亚洲一区| 欧美午夜一区二区三区免费大片|