?? sqrt.s
字號:
.seg "data" .asciz "@(#)sqrt.S 1.1 92/07/30 SMI"#define LOCORE#include <machine/asm_linkage.h>! Copyright (c) 1988 by Sun Microsystems, Inc.!! double sqrt(x) ! Double precision IEEE sqrt on Sunrise! Code by K.C. Ng, March 9, 1987, revised on May 14,1988.!! Sqrt(x) returns the correctly rounded (according to the prevailing ! rounding mode) square root of x. !! Algorithm:! 1. Shift and add to get 7.8 bits approximation of 1/sqrt(x).! 2. Apply reciproot iteration 2 times, then switch to newton iteration! once to get an approximation of sqrt(x) to one ulp.! 3. Final adjustment using division to get correctly rounded sqrt(x).! .seg "data" .align 8constant:twom57 = 0x0 .word 0x3c600000,0x0 ! 2**-57two54 = 0x8 .word 0x43500000,0x0 ! = 2**54twom27 = 0x10 .word 0x3e400000,0x0 ! = 2**-27half = 0x18 .word 0x3fe00000,0x0 ! = 0.5one = 0x20 .word 0x3ff00000,0x0 ! = 1.0onehalf = 0x28 .word 0x3ff80000,0x0 ! = 1.5 onemulp = 0x30 .word 0x3fefffff,0xffffffff ! = 1-2**-53table = 0x38 .word 0x1500,0x2ef8,0x4d67,0x6b02,0x87be,0xa395,0xbe7a,0xd866 .word 0xf14a,0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34 .word 0x17e5f,0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01 .word 0x1bfde,0x1c28d,0x1c2de,0x1c0db,0x1ba7e,0x1b11c,0x1a4b5 .word 0x1953d,0x18266,0x16be0,0x1683e,0x179d8,0x18a4d,0x19992 .word 0x1a789,0x1b445,0x1bf61,0x1c989,0x1d16d,0x1d77b,0x1dddf .word 0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,0x1df2a,0x1d635 .word 0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,0x1527f .word 0x1334a,0x11051,0xe951,0xbe01,0x8e0d,0x5924,0x1edd! local variable using fpx = -0x8y = -0x10tmp = -0x18ofsr = -0x20nfsr = -0x24tfsr = -0x28 .seg "text" .global _SVID_libm_err ENTRY(sqrt)insqrt: save %sp,-144,%sp set constant,%l0 ! l0 = address of constant std %i0,[%fp+x] ! save x sethi %hi(0x3ff00000),%o4 ! o4 = 0x3ff00000 subcc %i0,%o4,%o4 bne 1f addcc %o4,1,%o4 ! check whether x < 1+2**-27 sethi %hi(0x02000000),%o3 cmp %i1,%o3 bgu 2f tst %i1 bne quickcrank ! x = 1, return x nop ba sqrt_return ldd [%fp+x],%f0 ! load x ! x = 1 +- tiny with tiny < 2**-27quickcrank: ldd [%l0+twom57],%f2 ! f2 = 2**-57 sra %i1,1,%o2 st %o2,[%fp+x+4] andcc %i1,1,%g0 ! x even? bne odd ldd [%fp+x],%f0 fnegs %f2,%f2 ! evenodd: faddd %f0,%f2,%f0 ba sqrt_return nop1: bne 2f sethi %hi(0x7ff00000),%o4 sethi %hi(0xfc000000),%o3 cmp %i1,%o3 bgu quickcrank nop2: sethi %hi(0x00100000),%o3 and %i0,%o4,%o2 cmp %o2,%o3 bg 1f sethi %hi(0x80000000),%o3 ! o3 = 0x80000000 ! x is 0 or very tiny, but may not be subnormal andn %i0,%o3,%o2 ! purging signed zero orcc %o2,%i1,%g0 be quickreturn ! x is +-zero, return x+x tst %i0 bl NaN ! x < 0, return NaN nop ! tiny positive x ldd [%l0+two54],%f2 ! set f2 = 2**54 ldd [%fp+x],%f0 ! load x fmuld %f0,%f2,%f0 ! scale up x by 2**54 std %f0,[%fp+tmp] ldd [%fp+tmp],%o0 ! get High part of new x call insqrt ! call sqrt again, avoid profiling nop ldd [%l0+twom27],%f2 ! f2 = 2**-(27) fmuld %f0,%f2,%f0 ! scale down sqrt(x) by 2**27 ba sqrt_return nop1: ! finite x, 0.5*x will not underflow tst %i0 bl NaN ! x < 0 return NaN cmp %o2,%o4 ! here o4 = 0x7ff00000 be quickreturn ! x must be NaN or +INF; return x+x nop ! now for reciproot algorithm ... ! save RD, NX flags; reset RD to RN; disable NX; save f4-f11 st %fsr,[%fp+ofsr] ! save fsr ld [%fp+ofsr],%o2 ! o2 = fsr sethi %hi(0xff800000),%o3 ! set mask to reset TEM,RP and RD andn %o2,%o3,%o2 ! fsr with everything clear sethi %hi(0x40000000),%o3 ! RD = RZ or %o2,%o3,%o2 ! new fsr with RD = RZ st %o2,[%fp+nfsr] st %g0,[%fp+tfsr] ld [%fp+tfsr],%fsr ! disable TEM, and set RD to RN ldd [%fp+x],%f0 ldd [%l0+half],%f2 fmuld %f0,%f2,%f2 ! f2 = 0.5*x ! initial approximation for 1/sqrt(x) srl %i0,1,%o0 ! high x >> 1 sethi %hi(0x5fe80000),%o1 ! offset constant sub %o1,%o0,%o0 ! o0 = k = 0x5fe80000 - (hx >> 1) add %l0,table,%o2 ! o2 = address of data table srl %o0,12,%o1 ! o1 := 4*(k >> 14) and %o1,0xfc,%o1 ! o1 := 4*[63&(o0>>14)] add %o2,%o1,%o2 ! o2 = address of the adjusting data ld [%o2],%o3 ! o3 = adjustment for the approximation sub %o0,%o3,%o0 ! high y ~ 1/sqrt(x) to 7.8 bits st %o0,[%fp+y] ! tmp = y ldd [%fp+y],%f10 ! f10 = y ! reciproot iteration once fmuld %f2,%f10,%f4 ! f4 = (0.5*x)*y fmuld %f10,%f4,%f6 ! f6 = ((0.5*x)*y)*y) ldd [%l0+onehalf],%f8 ! f8 = 1.5 fsubd %f8,%f6,%f6 ! f6 = 1.5-0.5*x*y*y fmuld %f10,%f6,%f4 ! f4 = y' = y*(1.5-0.5*x*y*y) ! reciproot iteration twice sethi %hi(0x00100000),%o4 fmuld %f0,%f4,%f6 ! f6 = x*y std %f4,[%fp+tmp] ld [%fp+tmp],%o3 ! o3 = Hy sub %o3,%o4,%o3 ! o3 = H(0.5*y) st %o3,[%fp+tmp] ldd [%fp+tmp],%f8 ! f8 = 0.5*y fmuld %f8,%f6,%f8 ! f8 = 0.5*x*y*y ldd [%l0+onehalf],%f10 ! f10 = 1.5 fsubd %f10,%f8,%f8 ! f8 = 1.5-0.5*x*y*y fmuld %f6,%f8,%f4 ! f4 = (x*y)*(1.5-0.5*x*y*y) ! now f4 is 29 bit to sqrt(x) ! Now use Newton iteration, at the same time determine RD fdivd %f2,%f4,%f6 ! f6 = (0.5*x)/y rounded ld [%fp+ofsr],%o4 ! o4 = old fsr or %o4,0x21,%o0 st %o0,[%fp+tfsr] ! old fsr with inexact accured srl %o4,30,%o3 ! o3 = RD sethi %hi(0xf0000000),%o2 ! o2 = mask for RD and RP andn %o4,%o2,%o4 sethi %hi(0x40000000),%o2 or %o4,%o2,%o4 ! old fsr with RD=RZ and RP=0 or %o4,0x20,%o4 xor %o4,0x20,%o4 ! with aexc (inexact)=0 st %o4,[%fp+nfsr] std %f4,[%fp+tmp] ld [%fp+tmp],%o0 ! o0 = Hy sethi %hi(0x00100000),%o1 sub %o0,%o1,%o0 ! o0 = H(0.5*y) st %o0,[%fp+tmp] ldd [%fp+tmp],%f10 ! f10 = 0.5*y faddd %f6,%f10,%f4 ! f4 = sqrt(x) to 1 ulp ! Twisted last bit to make sqrt(x) correctly rounded ld [%fp+nfsr],%fsr ! restore INEXACT flags, RD=RZ nop ! three nop after ldfsr nop nop fdivd %f2,%f4,%f0 ! f6 = z = (0.5*x)/y chopped quotient std %f4,[%fp+tmp] ! y is f4 ldd [%fp+tmp],%o0 sethi %hi(0x00100000),%o4 sub %o0,%o4,%o0 ! y = y/2 st %o0,[%fp+tmp] ldd [%fp+tmp],%f2 ! f2 = y/2 addcc %o1,1,%o1 addx %o0,%g0,%o0 ! y/2+ulp std %o0,[%fp+tmp] ! now tmp+4 = y/2+ulp ldd [%l0+onemulp],%f4 ! f4 = 0.9999999.... chopped set 0x20,%o4 ! o4 = inexact accrued mask ! o3 = RD from above std %f0,[%fp+x] ! make sure div is finished st %fsr,[%fp+nfsr] fmuld %f0,%f4,%f4 ! f4 = Z-1 ld [%fp+nfsr],%o0 ! o0 = current fsr andcc %o0,%o4,%o0 ! see if inexact flags was up bne 1f nop ! exact division, if z=y then exit fcmpd %f0,%f2 nop fbne 2f nop ld [%fp+ofsr],%fsr ! restore old fsr nop ! three nop after ldfsr nop nop faddd %f0,%f0,%f0 ba sqrt_return nop2: ! z!=y, set z=z-1 fmovs %f4,%f0 fmovs %f5,%f1 std %f4,[%fp+x]1: andcc %o3,1,%g0 ! test RD bne 1f ! goto 1f if RD is RZ or RM ld [%fp+x],%o4 ld [%fp+x+4],%o2 addcc %o2,1,%o2 addx %o4,%g0,%o4 st %o4,[%fp+x] st %o2,[%fp+x+4] ! fp+x store z+ulp andcc %o3,2,%g0 be 1f ! if RN goto 1f ldd [%fp+x],%f0 ldd [%fp+tmp],%f2 ! RP: f2 <- y+ulp1: faddd %f0,%f2,%f0 nop nop ld [%fp+tfsr],%fsrsqrt_return: ret restorequickreturn: ldd [%fp+x],%f0 ba sqrt_return faddd %f0,%f0,%f0NaN: ! reload x in %f0 ldd [%fp+x],%f0 ! purge off NaN argument ldd [%fp+x],%o0 set 0xfff00000,%o2 and %o0,%o2,%o3 cmp %o3,%o2 bne invalid andn %o0,%o2,%o0 orcc %o0,%o1,%g0 be invalid nop ! input is -NaN, just return x+x ba sqrt_return faddd %f0,%f0,%f0 ! result is invalidinvalid:! fsubd %f0,%f0,%f0! fdivd %f0,%f0,%f0 ! 0/0 create invalid signal ! ! Call SVID_libm_err to create invalid signal ! ! set input parameter for system V error handling routine ldd [%fp+x],%o0 mov %o0,%o2 mov %o1,%o3 set 26,%o4 ! private error type 1: sqrt(-ve) ! call system V error handling routine call _SVID_libm_err nop ba sqrt_return nop ! ! end of codes for System V !
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -