亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? jidctint.c

?? Trolltech公司發(fā)布的基于C++圖形開發(fā)環(huán)境
?? C
字號:
/* * jidctint.c * * Copyright (C) 1991-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time).  Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef DCT_ISLOW_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs.  The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm.  The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic.  We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants).  After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output.  This division can be done * cheaply as a right shift of CONST_BITS bits.  We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision.  These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling.  (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS  13#define PASS1_BITS  2#else#define CONST_BITS  13#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */#else#define FIX_0_298631336  FIX(0.298631336)#define FIX_0_390180644  FIX(0.390180644)#define FIX_0_541196100  FIX(0.541196100)#define FIX_0_765366865  FIX(0.765366865)#define FIX_0_899976223  FIX(0.899976223)#define FIX_1_175875602  FIX(1.175875602)#define FIX_1_501321110  FIX(1.501321110)#define FIX_1_847759065  FIX(1.847759065)#define FIX_1_961570560  FIX(1.961570560)#define FIX_2_053119869  FIX(2.053119869)#define FIX_2_562915447  FIX(2.562915447)#define FIX_3_072711026  FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const)  ((var) * (const))#endif/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result.  In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))/* * Perform dequantization and inverse DCT on one block of coefficients. */GLOBAL(void)jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,		 JCOEFPTR coef_block,		 JSAMPARRAY output_buf, JDIMENSION output_col){  INT32 tmp0, tmp1, tmp2, tmp3;  INT32 tmp10, tmp11, tmp12, tmp13;  INT32 z1, z2, z3, z4, z5;  JCOEFPTR inptr;  ISLOW_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE2];	/* buffers data between passes */  SHIFT_TEMPS  /* Pass 1: process columns from input, store into work array. */  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */  /* furthermore, we scale the results by 2**PASS1_BITS. */  inptr = coef_block;  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; ctr--) {    /* Due to quantization, we will usually find that many of the input     * coefficients are zero, especially the AC terms.  We can exploit this     * by short-circuiting the IDCT calculation for any column in which all     * the AC terms are zero.  In that case each output is equal to the     * DC coefficient (with scale factor as needed).     * With typical images and quantization tables, half or more of the     * column DCT calculations can be simplified this way.     */        if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&	inptr[DCTSIZE*7] == 0) {      /* AC terms all zero */      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;            wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;      wsptr[DCTSIZE*2] = dcval;      wsptr[DCTSIZE*3] = dcval;      wsptr[DCTSIZE*4] = dcval;      wsptr[DCTSIZE*5] = dcval;      wsptr[DCTSIZE*6] = dcval;      wsptr[DCTSIZE*7] = dcval;            inptr++;			/* advance pointers to next column */      quantptr++;      wsptr++;      continue;    }        /* Even part: reverse the even part of the forward DCT. */    /* The rotator is sqrt(2)*c(-6). */        z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);        z1 = MULTIPLY(z2 + z3, FIX_0_541196100);    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);        z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);    tmp0 = (z2 + z3) << CONST_BITS;    tmp1 = (z2 - z3) << CONST_BITS;        tmp10 = tmp0 + tmp3;    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        /* Odd part per figure 8; the matrix is unitary and hence its     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.     */        tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);        z1 = tmp0 + tmp3;    z2 = tmp1 + tmp2;    z3 = tmp0 + tmp2;    z4 = tmp1 + tmp3;    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */        tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */        z3 += z5;    z4 += z5;        tmp0 += z1 + z3;    tmp1 += z2 + z4;    tmp2 += z2 + z3;    tmp3 += z1 + z4;        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */        wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);        inptr++;			/* advance pointers to next column */    quantptr++;    wsptr++;  }    /* Pass 2: process rows from work array, store into output array. */  /* Note that we must descale the results by a factor of 8 == 2**3, */  /* and also undo the PASS1_BITS scaling. */  wsptr = workspace;  for (ctr = 0; ctr < DCTSIZE; ctr++) {    outptr = output_buf[ctr] + output_col;    /* Rows of zeroes can be exploited in the same way as we did with columns.     * However, the column calculation has created many nonzero AC terms, so     * the simplification applies less often (typically 5% to 10% of the time).     * On machines with very fast multiplication, it's possible that the     * test takes more time than it's worth.  In that case this section     * may be commented out.     */    #ifndef NO_ZERO_ROW_TEST    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;      outptr[2] = dcval;      outptr[3] = dcval;      outptr[4] = dcval;      outptr[5] = dcval;      outptr[6] = dcval;      outptr[7] = dcval;      wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part: reverse the even part of the forward DCT. */    /* The rotator is sqrt(2)*c(-6). */        z2 = (INT32) wsptr[2];    z3 = (INT32) wsptr[6];        z1 = MULTIPLY(z2 + z3, FIX_0_541196100);    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);        tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;        tmp10 = tmp0 + tmp3;    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        /* Odd part per figure 8; the matrix is unitary and hence its     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.     */        tmp0 = (INT32) wsptr[7];    tmp1 = (INT32) wsptr[5];    tmp2 = (INT32) wsptr[3];    tmp3 = (INT32) wsptr[1];        z1 = tmp0 + tmp3;    z2 = tmp1 + tmp2;    z3 = tmp0 + tmp2;    z4 = tmp1 + tmp3;    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */        tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */        z3 += z5;    z4 += z5;        tmp0 += z1 + z3;    tmp1 += z2 + z4;    tmp2 += z2 + z3;    tmp3 += z1 + z4;        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */        outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,					  CONST_BITS+PASS1_BITS+3)			    & RANGE_MASK];        wsptr += DCTSIZE;		/* advance pointer to next row */  }}#endif /* DCT_ISLOW_SUPPORTED */

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美一区在线| 日韩二区三区四区| 日韩中文欧美在线| 成人少妇影院yyyy| 日韩欧美不卡一区| 日韩伦理av电影| 激情综合一区二区三区| 欧美图区在线视频| 亚洲三级久久久| 国产成人av资源| 精品国产欧美一区二区| 亚洲第一搞黄网站| 日本电影欧美片| 中文字幕在线不卡一区二区三区 | 国产丶欧美丶日本不卡视频| 在线视频一区二区三| 中文字幕第一区| 国产在线日韩欧美| 欧美体内she精高潮| 1024亚洲合集| 色欧美88888久久久久久影院| 国产亲近乱来精品视频| 另类小说图片综合网| 欧美高清dvd| 亚洲国产美国国产综合一区二区| 91亚洲国产成人精品一区二区三 | 成人看片黄a免费看在线| 久久理论电影网| 国产一区 二区 三区一级| 日韩一区二区电影在线| 蜜桃av一区二区三区| 日韩欧美不卡在线观看视频| 免费一级欧美片在线观看| 日韩一区二区精品在线观看| 久久精品理论片| 精品成人免费观看| 高清不卡一二三区| 中文字幕一区二区三区色视频| 成人免费黄色大片| 亚洲精品免费看| 欧美色爱综合网| 久久疯狂做爰流白浆xx| 久久综合九色综合欧美就去吻| 国产制服丝袜一区| 国产精品无圣光一区二区| 91视视频在线观看入口直接观看www | 欧美日韩精品一区二区三区蜜桃| 亚洲小少妇裸体bbw| 7777精品伊人久久久大香线蕉的| 蜜乳av一区二区| 日本一区二区成人| 欧美三级日韩三级国产三级| 免费国产亚洲视频| 国产清纯美女被跳蛋高潮一区二区久久w | 欧美日本一道本| 国内成人自拍视频| 亚洲三级在线看| 欧美一区二区三区免费大片| 国产精品一区免费在线观看| 国产精品美女久久久久高潮| 欧美日韩精品电影| 国产一区二区女| 亚洲午夜在线观看视频在线| 久久亚区不卡日本| 91成人免费网站| 国产精品亚洲人在线观看| 中文字幕一区三区| 欧美一区二区在线观看| heyzo一本久久综合| 免费成人在线网站| 亚洲日本丝袜连裤袜办公室| 日韩视频免费观看高清完整版在线观看 | 麻豆精品国产传媒mv男同| 亚洲国产高清在线观看视频| 欧美日韩免费不卡视频一区二区三区| 经典三级视频一区| 亚洲高清免费视频| 日韩一区有码在线| www激情久久| 91国产成人在线| 粉嫩绯色av一区二区在线观看| 亚洲成人精品一区二区| 国产精品丝袜久久久久久app| 欧美性猛交xxxx乱大交退制版| 国产成人免费9x9x人网站视频| 日韩中文欧美在线| 亚洲免费视频中文字幕| 久久综合成人精品亚洲另类欧美 | 国产欧美日产一区| 欧美xxxx老人做受| 91精品国产综合久久蜜臀| 日本韩国视频一区二区| 国产一区二区不卡老阿姨| 日韩有码一区二区三区| 亚洲一卡二卡三卡四卡无卡久久| 久久久欧美精品sm网站| 日韩欧美亚洲一区二区| 777奇米成人网| 91国产免费看| 99re视频精品| www.爱久久.com| 懂色av一区二区在线播放| 久久99久久久欧美国产| 日韩精品1区2区3区| 亚洲综合久久av| 亚洲综合激情网| 亚洲一级二级在线| 亚洲国产精品久久久久婷婷884| 亚洲精品午夜久久久| 亚洲欧洲av一区二区三区久久| 欧美极品美女视频| 一色屋精品亚洲香蕉网站| 中文字幕成人av| 中文字幕在线播放不卡一区| 国产精品久久夜| 国产精品久久网站| 综合分类小说区另类春色亚洲小说欧美| 久久久不卡网国产精品二区| 久久久亚洲午夜电影| 亚洲国产精品精华液2区45| 亚洲国产电影在线观看| 中文字幕亚洲成人| 亚洲另类在线制服丝袜| 亚洲一区二区三区四区五区黄 | 亚洲四区在线观看| 亚洲视频资源在线| 亚洲一卡二卡三卡四卡无卡久久 | 精品国产123| 欧美极品aⅴ影院| 亚洲欧美色图小说| 亚洲午夜久久久久| 蜜桃av一区二区三区电影| 国产一区不卡在线| 日本黄色一区二区| 日韩欧美国产小视频| 久久精品视频免费观看| 亚洲精品国产a| 蜜臀av性久久久久蜜臀aⅴ| 国产精品系列在线播放| 99热国产精品| 欧美高清视频一二三区 | 日韩精品最新网址| 国产精品久久午夜夜伦鲁鲁| 亚洲成a人片在线不卡一二三区| 久久精品国产成人一区二区三区 | 麻豆精品一区二区三区| 国产福利精品一区二区| 色综合久久九月婷婷色综合| 欧美乱熟臀69xxxxxx| 国产清纯美女被跳蛋高潮一区二区久久w| 自拍偷在线精品自拍偷无码专区| 亚洲主播在线播放| 国产剧情一区在线| 欧美三级在线视频| 日本一区二区免费在线| 水野朝阳av一区二区三区| 国产很黄免费观看久久| 欧美性xxxxxx少妇| 中文字幕精品在线不卡| 亚洲超丰满肉感bbw| 成人午夜电影网站| 精品三级在线看| 亚洲国产精品久久人人爱| 成人免费高清视频在线观看| 69久久夜色精品国产69蝌蚪网| 国产拍欧美日韩视频二区| 天堂蜜桃91精品| 色中色一区二区| 国产日韩欧美精品一区| 婷婷一区二区三区| 91在线你懂得| 欧美激情一区二区三区蜜桃视频| 日韩和欧美一区二区三区| 91免费看`日韩一区二区| 久久精品水蜜桃av综合天堂| 蜜桃精品视频在线观看| 色综合久久天天综合网| 久久蜜臀中文字幕| 毛片基地黄久久久久久天堂| 欧美日韩国产另类一区| 亚洲欧美另类小说视频| 成人午夜视频网站| 国产视频一区不卡| 国产米奇在线777精品观看| 日韩午夜在线影院| 亚洲国产视频网站| 在线视频一区二区三区| 亚洲欧美日本在线| www.在线成人| 中文字幕一区二区不卡| jlzzjlzz欧美大全| 国产精品色婷婷久久58| 成人深夜福利app| 日本一区二区综合亚洲| 国产成人在线视频免费播放| 久久婷婷综合激情| 国产福利一区二区三区视频| 国产香蕉久久精品综合网| 国产精品主播直播| 久久精品日韩一区二区三区|