亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? jidctfst.c

?? Trolltech公司發(fā)布的基于C++圖形開發(fā)環(huán)境
?? C
字號(hào):
/* * jidctfst.c * * Copyright (C) 1994-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a fast, not so accurate integer implementation of the * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time).  Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README).  The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs.  These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries.  The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values.  The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef DCT_IFAST_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* Scaling decisions are generally the same as in the LL&M algorithm; * see jidctint.c for more details.  However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated.  We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13.  This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */#if BITS_IN_JSAMPLE == 8#define CONST_BITS  8#define PASS1_BITS  2#else#define CONST_BITS  8#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 8#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */#else#define FIX_1_082392200  FIX(1.082392200)#define FIX_1_414213562  FIX(1.414213562)#define FIX_1_847759065  FIX(1.847759065)#define FIX_2_613125930  FIX(2.613125930)#endif/* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift.  This yields an incorrectly * rounded result half the time... */#ifndef USE_ACCURATE_ROUNDING#undef DESCALE#define DESCALE(x,n)  RIGHT_SHIFT(x, n)#endif/* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16 * multiplication will do.  For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */#if BITS_IN_JSAMPLE == 8#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))#else#define DEQUANTIZE(coef,quantval)  \	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)#endif/* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if INT32 right shift is. */#ifdef RIGHT_SHIFT_IS_UNSIGNED#define ISHIFT_TEMPS	DCTELEM ishift_temp;#if BITS_IN_JSAMPLE == 8#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */#else#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */#endif#define IRIGHT_SHIFT(x,shft)  \    ((ishift_temp = (x)) < 0 ? \     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \     (ishift_temp >> (shft)))#else#define ISHIFT_TEMPS#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))#endif#ifdef USE_ACCURATE_ROUNDING#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))#else#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))#endif/* * Perform dequantization and inverse DCT on one block of coefficients. */GLOBAL(void)jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,		 JCOEFPTR coef_block,		 JSAMPARRAY output_buf, JDIMENSION output_col){  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  DCTELEM tmp10, tmp11, tmp12, tmp13;  DCTELEM z5, z10, z11, z12, z13;  JCOEFPTR inptr;  IFAST_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE2];	/* buffers data between passes */  SHIFT_TEMPS			/* for DESCALE */  ISHIFT_TEMPS			/* for IDESCALE */  /* Pass 1: process columns from input, store into work array. */  inptr = coef_block;  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; ctr--) {    /* Due to quantization, we will usually find that many of the input     * coefficients are zero, especially the AC terms.  We can exploit this     * by short-circuiting the IDCT calculation for any column in which all     * the AC terms are zero.  In that case each output is equal to the     * DC coefficient (with scale factor as needed).     * With typical images and quantization tables, half or more of the     * column DCT calculations can be simplified this way.     */        if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&	inptr[DCTSIZE*7] == 0) {      /* AC terms all zero */      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);      wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;      wsptr[DCTSIZE*2] = dcval;      wsptr[DCTSIZE*3] = dcval;      wsptr[DCTSIZE*4] = dcval;      wsptr[DCTSIZE*5] = dcval;      wsptr[DCTSIZE*6] = dcval;      wsptr[DCTSIZE*7] = dcval;            inptr++;			/* advance pointers to next column */      quantptr++;      wsptr++;      continue;    }        /* Even part */    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);    tmp10 = tmp0 + tmp2;	/* phase 3 */    tmp11 = tmp0 - tmp2;    tmp13 = tmp1 + tmp3;	/* phases 5-3 */    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */    tmp0 = tmp10 + tmp13;	/* phase 2 */    tmp3 = tmp10 - tmp13;    tmp1 = tmp11 + tmp12;    tmp2 = tmp11 - tmp12;        /* Odd part */    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    z13 = tmp6 + tmp5;		/* phase 6 */    z10 = tmp6 - tmp5;    z11 = tmp4 + tmp7;    z12 = tmp4 - tmp7;    tmp7 = z11 + z13;		/* phase 5 */    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */    tmp6 = tmp12 - tmp7;	/* phase 2 */    tmp5 = tmp11 - tmp6;    tmp4 = tmp10 + tmp5;    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);    inptr++;			/* advance pointers to next column */    quantptr++;    wsptr++;  }    /* Pass 2: process rows from work array, store into output array. */  /* Note that we must descale the results by a factor of 8 == 2**3, */  /* and also undo the PASS1_BITS scaling. */  wsptr = workspace;  for (ctr = 0; ctr < DCTSIZE; ctr++) {    outptr = output_buf[ctr] + output_col;    /* Rows of zeroes can be exploited in the same way as we did with columns.     * However, the column calculation has created many nonzero AC terms, so     * the simplification applies less often (typically 5% to 10% of the time).     * On machines with very fast multiplication, it's possible that the     * test takes more time than it's worth.  In that case this section     * may be commented out.     */    #ifndef NO_ZERO_ROW_TEST    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;      outptr[2] = dcval;      outptr[3] = dcval;      outptr[4] = dcval;      outptr[5] = dcval;      outptr[6] = dcval;      outptr[7] = dcval;      wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part */    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)	    - tmp13;    tmp0 = tmp10 + tmp13;    tmp3 = tmp10 - tmp13;    tmp1 = tmp11 + tmp12;    tmp2 = tmp11 - tmp12;    /* Odd part */    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];    tmp7 = z11 + z13;		/* phase 5 */    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */    tmp6 = tmp12 - tmp7;	/* phase 2 */    tmp5 = tmp11 - tmp6;    tmp4 = tmp10 + tmp5;    /* Final output stage: scale down by a factor of 8 and range-limit */    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)			    & RANGE_MASK];    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)			    & RANGE_MASK];    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)			    & RANGE_MASK];    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)			    & RANGE_MASK];    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)			    & RANGE_MASK];    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)			    & RANGE_MASK];    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)			    & RANGE_MASK];    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)			    & RANGE_MASK];    wsptr += DCTSIZE;		/* advance pointer to next row */  }}#endif /* DCT_IFAST_SUPPORTED */

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线看不卡av| 欧美精品在线视频| 视频一区二区国产| 国产日韩精品视频一区| 欧美性视频一区二区三区| 理论片日本一区| 一区二区三区免费在线观看| 久久久久久免费网| 欧美日本免费一区二区三区| 成人av综合一区| 精品一区免费av| 天天亚洲美女在线视频| 亚洲伦理在线精品| 久久精品欧美一区二区三区麻豆| 欧美日韩视频在线第一区 | 国产精品一区一区三区| 一级精品视频在线观看宜春院| 久久久综合网站| 日韩免费看的电影| 欧美色老头old∨ideo| av资源站一区| 成人蜜臀av电影| 国产一区二区三区免费在线观看| 亚洲 欧美综合在线网络| 亚洲丝袜精品丝袜在线| 国产欧美一区二区三区在线看蜜臀 | 午夜精品久久久久久| 亚洲天堂av老司机| 国产精品国产三级国产普通话99 | 国产精品综合一区二区| 日韩二区三区在线观看| 亚洲高清三级视频| 亚洲一区二区三区四区在线观看 | 久久久久久久久久久久久久久99| 欧美精品乱码久久久久久按摩| 色偷偷成人一区二区三区91 | 亚洲国产精品自拍| 亚洲一区二区在线免费看| 1区2区3区国产精品| 国产精品三级视频| 久久久www成人免费无遮挡大片| 日韩亚洲欧美在线| 欧美一级日韩不卡播放免费| 欧美美女黄视频| 制服丝袜中文字幕一区| 欧美美女bb生活片| 欧美一区二区美女| 91麻豆精品国产91久久久久| 91精品国产一区二区人妖| 91精品国产色综合久久不卡电影 | 国产综合久久久久影院| 激情五月婷婷综合网| 国产麻豆精品久久一二三| 国产成人夜色高潮福利影视| 成人精品在线视频观看| 99久久精品久久久久久清纯| 色婷婷亚洲婷婷| 欧美精品免费视频| 久久蜜桃香蕉精品一区二区三区| 欧美韩国日本一区| 亚洲欧美怡红院| 图片区日韩欧美亚洲| 久久不见久久见免费视频1| 国产另类ts人妖一区二区| 成人激情文学综合网| 在线观看欧美日本| 91精品国产综合久久久久久久久久| 日韩欧美成人一区| 欧美经典一区二区| 一区二区三区欧美亚洲| 奇米一区二区三区av| 成人永久免费视频| 欧美视频在线一区| xvideos.蜜桃一区二区| 亚洲欧美日韩久久| 青草av.久久免费一区| 成人精品免费网站| 欧美高清你懂得| 欧美国产成人精品| 午夜精品一区二区三区电影天堂 | 亚洲三级在线播放| 日本不卡一区二区三区高清视频| 国产乱码精品一品二品| 欧美亚洲一区二区在线| 久久蜜桃一区二区| 亚洲主播在线播放| 国产成人免费在线| 欧美日韩视频第一区| 国产清纯白嫩初高生在线观看91| 亚洲国产视频网站| 国产成人福利片| 欧美日韩电影在线播放| 中文成人综合网| 日韩激情视频在线观看| 99免费精品视频| 精品国产在天天线2019| 依依成人综合视频| 成人在线一区二区三区| 日韩一区二区免费高清| 亚洲色图在线播放| 韩国v欧美v日本v亚洲v| 欧美日韩精品一区二区在线播放| 日本一区二区视频在线观看| 日韩激情中文字幕| 色av成人天堂桃色av| 国产欧美一区二区精品久导航| 日韩国产精品久久久久久亚洲| 91网站黄www| 国产午夜精品久久久久久久| 蜜臀91精品一区二区三区| 在线观看亚洲一区| 最新久久zyz资源站| 国产传媒一区在线| 精品剧情在线观看| 日韩国产高清影视| 在线观看一区二区视频| 中文字幕一区日韩精品欧美| 国产一区二区三区免费| 日韩限制级电影在线观看| 亚洲一区二区3| 91视视频在线观看入口直接观看www| 久久噜噜亚洲综合| 精品一区二区三区不卡| 欧美一区国产二区| 婷婷中文字幕综合| 欧美视频一区二区三区| 一区二区在线观看视频| 99精品久久只有精品| 国产精品欧美一级免费| 国产传媒欧美日韩成人| 久久久久久毛片| 国产乱码一区二区三区| 久久噜噜亚洲综合| 国产精品99久久久久久久vr | 精品国一区二区三区| 石原莉奈在线亚洲二区| 欧美日韩dvd在线观看| 亚洲一区二区美女| 欧美日韩国产系列| 午夜精品久久久久久久久久久| 欧美日韩一级视频| 三级影片在线观看欧美日韩一区二区| 欧美日韩日日夜夜| 亚洲国产精品久久久男人的天堂 | 欧美日韩一本到| 日韩精品亚洲专区| 欧美tickling网站挠脚心| 狠狠色狠狠色综合系列| 亚洲精品在线网站| 成人精品国产福利| 亚洲欧洲av另类| 欧洲精品一区二区| 亚洲成人你懂的| 精品免费国产一区二区三区四区| 精品一区二区av| 中文字幕精品在线不卡| av在线这里只有精品| 亚洲一二三区不卡| 日韩女优毛片在线| 国产成人aaa| 亚洲精品一二三| 欧美精品粉嫩高潮一区二区| 毛片一区二区三区| 国产精品伦理在线| 欧美亚洲图片小说| 久久国产视频网| 亚洲图片另类小说| 欧美一区三区四区| 成人精品视频一区二区三区尤物| 一区二区欧美在线观看| 日韩视频在线一区二区| 成人手机电影网| 亚洲一区二区欧美激情| 久久综合狠狠综合久久激情| 99久久精品免费| 日本不卡中文字幕| 中文字幕人成不卡一区| 91精品国产手机| 99riav久久精品riav| 奇米一区二区三区av| 国产精品国产三级国产有无不卡| 在线不卡中文字幕| 成人h动漫精品一区二区| 日韩高清电影一区| 国产精品国产成人国产三级 | 欧美三级午夜理伦三级中视频| 国产又黄又大久久| 亚洲制服丝袜一区| 国产亚洲欧洲一区高清在线观看| 欧美在线啊v一区| 国产一区二区精品久久| 亚洲主播在线观看| 亚洲国产精品av| 日韩免费在线观看| 色婷婷综合在线| 成人av影院在线| 久久99国产乱子伦精品免费| 亚洲综合视频在线观看| 中文成人av在线| 久久先锋资源网|