?? combining_nb.m
字號:
function [combining_predicts, errorrate] = combining_NB(DP, test_targets, CM)
% combining method -- Naive bayes
%
% Inputs:
% DP - predicting class by single classifiers
% test_targets - test targets
% CM - confusion matrices
% Outputs:
% combining_predicts - combining predicts
% use DP to predict
[nClassifiers, nClasses, nPatterns] = size(DP);
for i = 1: nPatterns
Support = ones(1, nClasses);
for j = 1: nClassifiers
temp = DP(j,:,i);
[tempmax,ind] = max(temp);
test_predicts = ind(1) - 1;
for k = 1: nClasses
Support(k) = Support(k) * (CM(k,test_predicts + 1,j)/sum(CM(:,test_predicts + 1,j)));
end
end
if sum(CM(:,test_predicts + 1,j)) == 0
i;
j;
k;
end
[tempmax,ind] = max(Support);
combining_predicts(i) = ind(1) - 1;
end
errorrate = length(find(combining_predicts ~= test_targets)) / nPatterns;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -