?? parameters.h
字號:
#ifndef parameters_h#define parameters_h 1#include <stdlib.h>#include <iostream.h>#include <fstream.h>#include "globals.h"/** * Class for all SVM-parameters * @li read and write access to all parameters * @li stream input and output * * @author Stefan Rueping <rueping@ls8.cs.uni-dortmund.de> * @version 0.1 **/class parameters_c{ // neg means "f(x) < y-eps" (<=> "*") // machine and kernel type // capacity public: // input and output functions friend istream& operator >> (istream& data_stream, parameters_c& the_parameters); friend ostream& operator << (ostream& data_stream, parameters_c& the_parameters); // default methods parameters_c(); void clear(); // capacity constraint SVMFLOAT realC; // loss function SVMFLOAT Lpos, Lneg; SVMFLOAT epsilon_pos, epsilon_neg; int quadraticLossPos, quadraticLossNeg; int balance_cost; // default parameters for examples int do_scale; // scale examples int do_scale_y; // scale y-values example_format default_example_format; // type of SVM int is_pattern; // set Lpos=0 for y>0 and Lneg=0 for y<0 int is_linear; // kernel=dot, use folding int is_distribution; int biased; // biased hyperplane (w*x+b) or unbiased (w*x)? // do cross validation? SVMINT cross_validation; // cross-validate on training set int cv_window; // do cross-validation by means of a sliding window int cv_inorder; // do cross-validation in given order of examples // parameters for search of C char search_c; SVMINT search_stop; SVMFLOAT c_min; // search for C to minimize loss SVMFLOAT c_max; SVMFLOAT c_delta; // numerical optimization parameters SVMFLOAT is_zero; // when is a lagrangian multiplier considered 0 SVMFLOAT nu; // nu-SVM int is_nu; SVMINT max_iterations; SVMINT working_set_size; SVMINT shrink_const; SVMFLOAT descend; // make at least this much descend on WS SVMFLOAT convergence_epsilon; SVMINT kernel_cache; int use_min_prediction; SVMFLOAT min_prediction; // let pred = max(min_prediction,f(x)) /** * Verbosity (higher level includes smaller): * 0 : only critical errors * 1 : information about success of algorithm * 2 : small summary about training and test * 3 : larger summary about training * 4 : information about each iteration * 5 : flood */ int verbosity; int print_w; // print whole hyperplane? int loo_estim; // print loo estim? SVMFLOAT get_Cpos(){ return(Lpos*realC); }; SVMFLOAT get_Cneg(){ return(Lneg*realC); };};istream& operator >> (istream& data_stream, parameters_c& the_parameters);ostream& operator << (ostream& data_stream, parameters_c& the_parameters);#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -