亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? libsvm升級到2.8版本
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed, 23 Mar 2005 01:13:38 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(49)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(26)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f423">There seems to be a zero division ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">Using python on MS windows, it fails to load the dll file.</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function
sgn(w^Tx - rho).
nSV and nBSV are number of support vectors and bounded support
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
form of C-SVM where C is replaced by nu. nu simply shows the
corresponding parameter. More details are in
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
libsvm document</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f402"><b>Q: Can you explain more about the model file?</b></a>
<br/>                                                                                

<p>
After the parameters, each line represents a support vector.
Support vectors are listed in the order of "labels" listed earlier.
(i.e., those from the first class in the "labels" list are
grouped first, and so on.) 
If k is the total number of classes,
in front of each support vector, there are
k-1 coefficients 
y*alpha where alpha are dual solution of the
following two class problems:
<br>
1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
<br>
and y=1 in first j-1 coefficients, y=-1 in the remaining
k-j coefficients.

For example, if there are 4 classes, the file looks like:

<pre>
+-+-+-+--------------------+
|1|1|1|                    |
|v|v|v|  SVs from class 1  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|2|                    |
|v|v|v|  SVs from class 2  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 3  |
|3|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 4  |
|4|4|4|                    |
+-+-+-+--------------------+
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
<br/>                                                                                

<p>
We have float as the default as you can store more numbers
in the cache. 
In general this is good enough but for few difficult
cases (e.g. C very very large) where solutions are huge
numbers, it might be possible that the numerical precision is not
enough using only float.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f404"><b>Q: How do I choose the kernel?</b></a>
<br/>                                                                                

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产日韩欧美精品在线| 午夜不卡av免费| 欧美日韩一区 二区 三区 久久精品| 日韩中文字幕一区二区三区| 亚洲精品第一国产综合野| 国产欧美va欧美不卡在线| 一区二区三区高清在线| 亚洲人成网站影音先锋播放| 国产精品国产三级国产| 国产精品久久久久久久裸模| 天堂一区二区在线| 日本韩国精品在线| 欧美影院一区二区| 91精品国产乱| 精品奇米国产一区二区三区| 日韩欧美中文字幕制服| 久久久亚洲高清| 欧美激情一区在线观看| 亚洲人成亚洲人成在线观看图片| 国产成人精品影院| 91在线观看美女| 色综合久久久久久久| 欧美久久久久久久久| 精品欧美久久久| 免费av成人在线| 97久久超碰国产精品| 欧美精品1区2区3区| 亚洲小说欧美激情另类| 久久国产视频网| 成人精品高清在线| 欧美日韩一区二区三区视频| 亚洲裸体在线观看| 色噜噜久久综合| 尤物av一区二区| 91丨porny丨户外露出| 亚洲婷婷国产精品电影人久久| 婷婷中文字幕综合| 在线电影欧美成精品| 日本最新不卡在线| 色综合激情五月| 亚洲中国最大av网站| 国产成人午夜精品影院观看视频 | 国产91精品露脸国语对白| 在线视频综合导航| 日本一区二区视频在线观看| 国产永久精品大片wwwapp| 91免费小视频| 亚洲第一主播视频| 91一区在线观看| 亚洲韩国精品一区| 精品国产自在久精品国产| 亚洲中国最大av网站| 制服丝袜日韩国产| 亚洲图片欧美一区| 精品欧美一区二区久久| 成人在线综合网站| 久久精品视频一区| 玖玖九九国产精品| 欧美国产精品一区二区| 在线免费观看不卡av| 琪琪久久久久日韩精品| 中文字幕精品一区二区三区精品 | 日韩欧美一区二区三区在线| 亚洲精品第1页| 日韩欧美中文字幕制服| 成人免费观看av| 亚洲国产精品影院| 国产午夜精品美女毛片视频| 在线观看区一区二| 国产一区二区在线影院| 悠悠色在线精品| 久久只精品国产| 国产黄色成人av| 一区二区三区美女| 国产午夜精品一区二区三区嫩草| 日本精品一区二区三区四区的功能| 免费在线看一区| 亚洲精品欧美激情| 亚洲国产成人在线| 欧美一级欧美三级在线观看| 97se亚洲国产综合自在线不卡| 日本欧美一区二区三区乱码| 亚洲日本在线天堂| 久久综合色鬼综合色| 欧美午夜精品一区二区三区| 国产大陆亚洲精品国产| 日韩二区三区在线观看| 亚洲色图20p| 久久久精品日韩欧美| 欧美一区二区高清| 91久久精品日日躁夜夜躁欧美| 国产一区二区在线看| 日韩黄色小视频| 亚洲欧美另类小说视频| 国产精品久久久久久久午夜片| 久久毛片高清国产| 欧美大度的电影原声| 欧美高清激情brazzers| 欧美性色aⅴ视频一区日韩精品| 成人av在线电影| 国产电影一区在线| 九九九精品视频| 亚洲色图.com| 国产精品久久看| 国产精品沙发午睡系列990531| 在线免费不卡视频| 色88888久久久久久影院野外| 成人午夜免费电影| 国产激情偷乱视频一区二区三区| 久久精品国产精品亚洲综合| 免费高清成人在线| 日韩精品免费视频人成| 天天免费综合色| 天天综合网 天天综合色| 五月激情综合婷婷| 日本va欧美va瓶| 另类欧美日韩国产在线| 美女视频网站久久| 日韩伦理免费电影| 亚洲视频在线观看三级| 亚洲激情一二三区| 一区二区三区四区不卡在线 | 国产精品中文字幕一区二区三区| 亚洲天堂av一区| 亚洲精品五月天| 亚洲一卡二卡三卡四卡| 婷婷国产v国产偷v亚洲高清| 麻豆久久一区二区| 国产一区欧美二区| av高清久久久| 国产精品亚洲一区二区三区在线 | 亚洲欧洲另类国产综合| 日韩欧美一级二级三级| 久久亚洲一区二区三区四区| 国产日韩精品一区二区浪潮av| 国产欧美一区二区三区在线老狼| 国产精品久久毛片av大全日韩| 亚洲免费观看高清完整版在线观看| 亚洲美女少妇撒尿| 日日夜夜免费精品| 韩国av一区二区三区四区| 亚洲v中文字幕| 九一久久久久久| 91在线视频18| 欧美日韩一区二区三区视频| 精品欧美乱码久久久久久| 最新成人av在线| 久久成人综合网| 91亚洲国产成人精品一区二区三 | 蜜桃一区二区三区四区| 国产成人在线视频免费播放| 欧洲精品一区二区| 久久影院午夜论| 亚洲宅男天堂在线观看无病毒| 日本欧美一区二区三区乱码| 成人免费视频国产在线观看| 欧美另类久久久品| 欧美经典一区二区| 日韩精品一级中文字幕精品视频免费观看| 国产一区视频在线看| 欧美日本国产视频| 欧美蜜桃一区二区三区| 国产亚洲成年网址在线观看| 午夜亚洲福利老司机| 国产老肥熟一区二区三区| 欧美日韩免费一区二区三区| 日本一区二区三区国色天香 | 色诱亚洲精品久久久久久| 日韩一级黄色大片| 亚洲裸体xxx| 波多野洁衣一区| 精品国产精品网麻豆系列 | 国产精品一区二区久久不卡| 欧美三级韩国三级日本三斤| 国产亚洲一区二区三区四区| 日韩国产成人精品| 欧美色大人视频| 1000精品久久久久久久久| 国产精品正在播放| 欧美大尺度电影在线| 婷婷综合五月天| 欧美日韩视频在线第一区 | 亚洲人快播电影网| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 日韩激情av在线| 欧美电影一区二区三区| 一区二区三区四区av| 色综合中文字幕国产 | www.亚洲精品| 久久久久亚洲蜜桃| 精品一区二区在线播放| 欧美一级一级性生活免费录像| 亚洲亚洲人成综合网络| 欧美日免费三级在线| 亚洲一区二区三区在线看| 一本大道综合伊人精品热热| 亚洲色图在线看| 在线中文字幕一区| 亚洲午夜视频在线| 欧美久久高跟鞋激|