亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? libsvm升級到2.8版本
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed, 23 Mar 2005 01:13:38 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(49)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(26)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f423">There seems to be a zero division ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">Using python on MS windows, it fails to load the dll file.</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function
sgn(w^Tx - rho).
nSV and nBSV are number of support vectors and bounded support
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
form of C-SVM where C is replaced by nu. nu simply shows the
corresponding parameter. More details are in
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
libsvm document</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f402"><b>Q: Can you explain more about the model file?</b></a>
<br/>                                                                                

<p>
After the parameters, each line represents a support vector.
Support vectors are listed in the order of "labels" listed earlier.
(i.e., those from the first class in the "labels" list are
grouped first, and so on.) 
If k is the total number of classes,
in front of each support vector, there are
k-1 coefficients 
y*alpha where alpha are dual solution of the
following two class problems:
<br>
1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
<br>
and y=1 in first j-1 coefficients, y=-1 in the remaining
k-j coefficients.

For example, if there are 4 classes, the file looks like:

<pre>
+-+-+-+--------------------+
|1|1|1|                    |
|v|v|v|  SVs from class 1  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|2|                    |
|v|v|v|  SVs from class 2  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 3  |
|3|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 4  |
|4|4|4|                    |
+-+-+-+--------------------+
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
<br/>                                                                                

<p>
We have float as the default as you can store more numbers
in the cache. 
In general this is good enough but for few difficult
cases (e.g. C very very large) where solutions are huge
numbers, it might be possible that the numerical precision is not
enough using only float.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f404"><b>Q: How do I choose the kernel?</b></a>
<br/>                                                                                

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品理论片| 蜜臀av亚洲一区中文字幕| 一区二区三区在线视频免费| 五月天婷婷综合| 成人亚洲一区二区一| 欧美福利一区二区| 中文字幕色av一区二区三区| 九九视频精品免费| 欧美亚洲动漫精品| 国产精品成人在线观看| 久久er99精品| 日韩欧美国产精品| 首页综合国产亚洲丝袜| 97精品久久久久中文字幕| 日韩视频免费观看高清在线视频| 亚洲综合色噜噜狠狠| a在线欧美一区| 久久久国产一区二区三区四区小说| 婷婷亚洲久悠悠色悠在线播放 | 久久久精品日韩欧美| 日韩国产欧美在线观看| 日本高清免费不卡视频| 国产精品乱码人人做人人爱 | 国产亚洲精品aa午夜观看| 狠狠色丁香九九婷婷综合五月| 97精品电影院| 亚洲视频1区2区| 风流少妇一区二区| 国产亚洲欧美色| 国产精品一卡二| 国产欧美日韩卡一| 激情欧美一区二区三区在线观看| 欧美成人一区二区三区| 麻豆精品视频在线| 欧美草草影院在线视频| 久久99国产精品尤物| 欧美大片在线观看一区二区| 麻豆成人免费电影| 亚洲精品一区二区精华| 国产一区啦啦啦在线观看| 久久女同精品一区二区| 国产凹凸在线观看一区二区| 中文字幕欧美日韩一区| 成人97人人超碰人人99| 一区二区三区在线观看国产 | 91在线一区二区三区| 国产精品第13页| 欧洲精品视频在线观看| 亚洲成年人影院| 91麻豆精品国产综合久久久久久| 日本亚洲欧美天堂免费| 久久女同性恋中文字幕| 91在线免费看| 日韩在线一二三区| 欧美v日韩v国产v| 懂色av一区二区三区蜜臀| 亚洲欧美激情在线| 欧美日韩精品欧美日韩精品一综合| 日本少妇一区二区| 国产亚洲1区2区3区| 91在线观看高清| 日韩av一级片| 中文字幕av不卡| 欧美日韩国产中文| 国产麻豆成人传媒免费观看| 亚洲精品国产a久久久久久| 91麻豆精品国产91久久久久久久久 | 久久久无码精品亚洲日韩按摩| 成人免费视频播放| 午夜久久电影网| 欧美国产一区在线| 7777精品伊人久久久大香线蕉经典版下载 | 激情五月婷婷综合网| 中文一区在线播放| 91精品国产色综合久久久蜜香臀| 国产99久久久久久免费看农村| 亚洲电影一级黄| 中文字幕av一区二区三区免费看 | 国产日韩欧美精品电影三级在线| 日本道色综合久久| 国产麻豆9l精品三级站| 亚洲图片欧美视频| 国产精品欧美一区二区三区| 欧美裸体一区二区三区| 9人人澡人人爽人人精品| 美女视频黄频大全不卡视频在线播放| 中文字幕一区二区不卡| wwww国产精品欧美| 欧美日韩国产综合一区二区| av一区二区久久| 国产又黄又大久久| 日韩**一区毛片| 一区二区三区四区在线免费观看| 久久久噜噜噜久噜久久综合| 日韩欧美综合在线| 欧美日韩另类一区| 色呦呦一区二区三区| 成人午夜短视频| 国产精品99久| 国产在线国偷精品产拍免费yy | 国产在线视频一区二区三区| 日韩制服丝袜av| 亚洲成av人片在线观看| 一级女性全黄久久生活片免费| 亚洲国产高清在线观看视频| 久久久久高清精品| 久久品道一品道久久精品| 欧美哺乳videos| 精品少妇一区二区三区日产乱码 | 欧美一区二区三区小说| 欧美日韩国产一级| 欧美午夜寂寞影院| 欧美亚洲一区二区在线| 91老司机福利 在线| 91一区二区三区在线观看| 91美女片黄在线观看| 一本色道**综合亚洲精品蜜桃冫| 色综合久久天天| 色综合激情五月| 欧美亚男人的天堂| 欧美日韩黄色一区二区| 日韩一区二区三区四区| 日韩精品自拍偷拍| 亚洲精品在线电影| 久久精品夜色噜噜亚洲a∨| 国产无一区二区| 亚洲三级电影全部在线观看高清| 亚洲综合久久久| 欧美a级一区二区| 精品午夜一区二区三区在线观看| 国内外成人在线| 丁香婷婷综合色啪| 日本高清不卡在线观看| 欧美日韩免费视频| 日韩欧美色电影| 中文久久乱码一区二区| 亚洲精品伦理在线| 青青草国产成人99久久| 国产精品自拍一区| 91美女片黄在线观看91美女| 717成人午夜免费福利电影| 欧美成人video| 中文字幕亚洲一区二区av在线| 亚洲国产综合视频在线观看| 理论片日本一区| 99在线精品视频| 91精品国产综合久久香蕉的特点| 欧美zozozo| 国产精品精品国产色婷婷| 亚洲成a人片在线不卡一二三区 | 蜜桃精品视频在线| 懂色av一区二区三区免费观看 | 色噜噜狠狠一区二区三区果冻| 欧美区在线观看| 国产精品久久久久久久午夜片| 伊人性伊人情综合网| 狠狠色丁香久久婷婷综合_中 | 国产日韩精品一区二区三区 | 日韩欧美一级片| 国产精品福利在线播放| 午夜影视日本亚洲欧洲精品| 国产精品系列在线观看| 7777精品久久久大香线蕉| 综合在线观看色| 精品一区在线看| 欧美日韩在线播| 国产精品美女久久久久久| 久久精品久久99精品久久| 色偷偷88欧美精品久久久| 亚洲精品在线电影| 午夜精品免费在线观看| av不卡在线播放| 欧美精品一区二区不卡 | 一区二区三区丝袜| 国产一区二区在线电影| 欧美日韩高清一区二区| 亚洲精品乱码久久久久久久久| 国产一区二区h| 日韩欧美国产系列| 亚洲成人综合在线| 色诱视频网站一区| 亚洲日本一区二区三区| 成人在线视频一区| 精品成人一区二区| 奇米精品一区二区三区在线观看一 | 日韩一区二区三区电影在线观看 | 欧美日韩精品一区二区在线播放| 亚洲视频在线一区二区| 本田岬高潮一区二区三区| 久久综合久久综合九色| 久久精品国产网站| 欧美一区二区国产| 美女视频黄频大全不卡视频在线播放| 欧美欧美午夜aⅴ在线观看| 亚洲一区在线免费观看| 在线视频欧美精品| 亚洲国产视频a| 欧美亚洲禁片免费| 亚洲第一成人在线| 91精品国产综合久久久蜜臀图片|