亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? libsvm升級到2.8版本
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
"1-against-the rest" is a good method whose performance
is comparable to "1-against-1." We do the latter
simply because its training time is shorter.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f420"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
<br/>                                                                                
<p>
Cross validation is used for selecting good parameters.
After finding them, you want to re-train the whole
data without the -v option.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f421"><b>Q: I would like to try different random partition for cross validation, how could I do it ?</b></a>
<br/>                                                                                
<p>
If you use GNU C library,
the default seed 1 is considered. Thus you always
get the same result of running svm-train -v.
To have different seeds, you can add the following code
in svm-train.c:
<pre>
#include &lt;time.h&gt;
</pre>
and in the beginning of the subroutine do_cross_validation(),
<pre>
srand(time(0));
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f422"><b>Q: I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
<br/>                                                                                
<p>
It is extremely easy. Taking c-svc for example, only two 
places of svm.cpp have to be changed. 
First, modify the following line of 
solve_c_svc from 
<pre>
	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
		alpha, Cp, Cn, param->eps, si, param->shrinking);
</pre>
to
<pre>
	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
		alpha, INF, INF, param->eps, si, param->shrinking);
</pre>
Second, in  the class  of SVC_Q, declare C as 
a private variable:
<pre>
	double C;
</pre> 
In the constructor we assign it to param.C:
<pre>
        this->C = param.C;		
</pre>
Than in the the subroutine get_Q, after the for loop, add
<pre>
        if(i >= start && i < len) 
		data[i] += 1/C;
</pre>

For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
<pre>
	data[real_i] += 1/C;
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f423"><b>Q: There seems to be a zero division ?</b></a>
<br/>                                                                                
<p>
We intend
to have this zero division. 
Under the IEEE floating point standard, zero
division will returns infinity. Then with the 
operations later to bound it, things go back to normal numbers without any problem.

In general no warning messages happen. On some computers, you may
need to add an option (e.g. -mieee on alpha).

Reasons of doing so are described in libsvm document.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f424"><b>Q: How do I choose parameters for one-class svm as training data are in only one class?</b></a>
<br/>                                                                                
<p>
You have pre-specified true positive rate in mind and then search for
parameters which achieve similar cross-validation accuracy.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes longer time</b></a>
<br/>                                                                                
<p>
To construct this probability model, we internaly conduct a 
cross validation, which is more time consuming than
a regular training.
Hence, in general you do parameter selection first without
-b 1. You only use -b 1 when good parameters have been
selected. In other words, you avoid using -b 1 and -v
together.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
<br/>                                                                                
<p>
There is absolutely no reason the probability outputs guarantee
you better accuracy. The main purpose of this option is
to provide you the probability estimates, but not to boost
prediction accuracy. From our experience, 
after proper parameter selections, in general with
and without -b have similar accuracy. Occasionally there
are some differences.
It is not recommended to compare the two under 
just a fixed parameter
set as more differences will be observed.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q5:_Graphic_Interface"></a>
<a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
<br/>                                                                                
<p>
For Microsoft windows, first press the "print screen" key on the keyboard.
Open "Microsoft Paint" 
(included in Windows) 
and press "ctrl-v." Then you can clip
the part of picture which you want.
For X windows, you can 
use the program "xv" to grab the picture of the svm-toy window.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q5:_Graphic_Interface"></a>
<a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
<br/>                                                                                
<p>
The program svm-toy assumes both attributes (i.e. x-axis and y-axis
values) are in (0,1). Hence you want to scale your 
data to between a small positive number and 
a number less than but very close to 1.
Moreover, class labels must be 1, 2, or 3
(not 1.0, 2.0 or anything else).
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q5:_Graphic_Interface"></a>
<a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
<br/>                                                                                
<p>
Taking windows/svm-toy.cpp as an example, you need to
modify it and  the difference
from the original file is as the following: (for five classes of
data)
<pre>
30,32c30
< 	RGB(200,0,200),
< 	RGB(0,160,0),
< 	RGB(160,0,0)
---
> 	RGB(200,0,200)
39c37
< HBRUSH brush1, brush2, brush3, brush4, brush5;
---
> HBRUSH brush1, brush2, brush3;
113,114d110
< 	brush4 = CreateSolidBrush(colors[7]);
< 	brush5 = CreateSolidBrush(colors[8]);
155,157c151
< 	else if(v==3) return brush3;
< 	else if(v==4) return brush4;
< 	else return brush5;
---
> 	else return brush3;
325d318
< 	  int colornum = 5;
327c320
< 		svm_node *x_space = new svm_node[colornum * prob.l];
---
> 		svm_node *x_space = new svm_node[3 * prob.l];
333,338c326,331
< 			x_space[colornum * i].index = 1;
< 			x_space[colornum * i].value = q->x;
< 			x_space[colornum * i + 1].index = 2;
< 			x_space[colornum * i + 1].value = q->y;
< 			x_space[colornum * i + 2].index = -1;
< 			prob.x[i] = &x_space[colornum * i];
---
> 			x_space[3 * i].index = 1;
> 			x_space[3 * i].value = q->x;
> 			x_space[3 * i + 1].index = 2;
> 			x_space[3 * i + 1].value = q->y;
> 			x_space[3 * i + 2].index = -1;
> 			prob.x[i] = &x_space[3 * i];
397c390
< 				if(current_value > 5) current_value = 1;
---
> 				if(current_value > 3) current_value = 1;
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q6:_Java_version_of_libsvm"></a>
<a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
<br/>                                                                                
<p>
They are the same thing. We just rewrote the C++ code
in Java.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q6:_Java_version_of_libsvm"></a>
<a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
<br/>                                                                                
<p>
This depends on the VM you used. We have seen good
VM which leads the Java version to be quite competitive with
the C++ code. (though still slower)
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q6:_Java_version_of_libsvm"></a>
<a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
<br/>                                                                                
<p>
You should try to increase the maximum Java heap size.
For example,
<pre>
java -Xmx256m svm_train.java ...
</pre>
sets the maximum heap size to 256M.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q6:_Java_version_of_libsvm"></a>
<a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
<br/>                                                                                
<p>
Unlike C, Java does not have a preprocessor built-in.
However,  we need some macros (see first 3 lines of svm.m4).

</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q7:_Python_Interface"></a>
<a name="f702"><b>Q: Using python on MS windows, it fails to load the dll file.</b></a>
<br/>                                                                                
<p>
It seems the dll file is version dependent. So far we haven't
found out a good solution. Please email us if you have any
good suggestions.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q7:_Python_Interface"></a>
<a name="f703"><b>Q: How to modify the python interface on MS windows and rebuild the dll file ?</b></a>
<br/>                                                                                
<p>

To modify the interface, follow the instructions given in
<a href=http://www.swig.org/Doc1.1/HTML/Python.html#n2>
http://www.swig.org/Doc1.1/HTML/Python.html#n2</a>

<p>

If you just want to build DLL for a different python version,
after libsvm 2.5, you can easily use the file Makefile.win.
See details in README.

Alternatively, you can use Visual C++:
<ol>
<li> Create a Win32 DLL project and set (Build->Active Configuration) to "Release."
<li> Add svm.cpp, svmc_wrap.c, python2x.lib to your project.
<li> Add the directories containing Python.h and svm.h to
the Additional include directories. (in Project
Settings->C/C++->Preprocessor)
<li> add __WIN32__ to Preprocessor definitions
<li> Make sure that in the "General" category of
Project->Settings->Settings For "Win32 Release", Output
directories should be "Release"
<li> Build the DLL.
</ol>


<!--
There do exist work arounds, however. In
http://aspn.activestate.com/ASPN/Mail/Message/python-list/983252
they presented a solution: 1) find the version of python in the
registry 2) perform LoadLibrary("pythonxx.dll") and 3) resolve the
reference to functions through GetProcAddress. It is said that SWIG
may help on this.
http://mailman.cs.uchicago.edu/pipermail/swig/2001-July/002744.html
presented a similar example.
-->
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q7:_Python_Interface"></a>
<a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
<br/>                                                                                
<p> Yes, here are some examples:

<pre>
$ export CLASSPATH=$CLASSPATH:~/libsvm-2.4/java/libsvm.jar
$ ./jython
Jython 2.1a3 on java1.3.0 (JIT: jitc)
Type "copyright", "credits" or "license" for more information.
>>> from libsvm import *
>>> dir()
['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
'svm_problem']
>>> x1 = [svm_node(index=1,value=1)]
>>> x2 = [svm_node(index=1,value=-1)]
>>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
>>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
>>> model = svm.svm_train(prob,param)
*
optimization finished, #iter = 1
nu = 1.0
obj = -1.018315639346838, rho = 0.0
nSV = 2, nBSV = 2
Total nSV = 2
>>> svm.svm_predict(model,x1)
1.0
>>> svm.svm_predict(model,x2)
-1.0
>>> svm.svm_save_model("test.model",model)

</pre>

<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q7:_Python_Interface"></a>
<a name="f705"><b>Q: How could I install the python interface on Mac OS? </b></a>
<br/>                                                                                
<p> According to S V N Vishwanathan in Australian National University, instead of 
LDFLAGS = -shared
in the Makefile, you need
<pre>
LDFLAGS = -bundle -flat_namespace -undefined suppress
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <p align="middle">
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
</p>
</body>
</html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本特黄久久久高潮| 欧美艳星brazzers| 日本韩国欧美一区二区三区| 欧美一区二区三区免费视频| 国产精品美女一区二区三区| 亚洲高清不卡在线| 99国产精品国产精品毛片| 欧美一三区三区四区免费在线看| 国产精品你懂的| 久久99国产精品麻豆| 欧美午夜寂寞影院| 国产精品久久久久影视| 久久国内精品视频| 91精品国产综合久久精品app| 国产精品国产三级国产aⅴ入口 | 精品国产污网站| 午夜一区二区三区在线观看| 99麻豆久久久国产精品免费 | 奇米777欧美一区二区| 91麻豆视频网站| 中文字幕中文字幕在线一区| 国产麻豆9l精品三级站| 日韩一级黄色大片| 美腿丝袜亚洲色图| 欧美精品 日韩| 天堂一区二区在线| 欧美久久一二区| 天天综合日日夜夜精品| 欧美日高清视频| 亚洲大片精品永久免费| 欧美伊人精品成人久久综合97| 亚洲精品视频在线观看网站| 91在线精品一区二区| 亚洲日本免费电影| av午夜精品一区二区三区| 1000部国产精品成人观看| 成年人午夜久久久| 中文字幕一区二区三区av| 本田岬高潮一区二区三区| 国产精品久久久久影院亚瑟| 色婷婷久久99综合精品jk白丝| 国产精品久久久久久户外露出 | 亚洲欧美另类图片小说| 91亚洲精品久久久蜜桃| 亚洲乱码国产乱码精品精小说 | 91麻豆免费在线观看| 国产精品福利一区二区| 不卡av在线网| 亚洲第一激情av| 日韩三级.com| 国产精品一区二区男女羞羞无遮挡| 久久影院视频免费| 成人免费视频视频| 一二三区精品视频| 欧美精品三级在线观看| 国产在线麻豆精品观看| 国产精品午夜久久| 一本色道久久综合亚洲精品按摩 | 欧美浪妇xxxx高跟鞋交| 久久福利资源站| 中文字幕日韩一区| 一区二区三区欧美视频| av影院午夜一区| 日本不卡一区二区三区| 久久久久久久久99精品| 色一区在线观看| 国产在线视频精品一区| 亚洲视频免费在线观看| 欧美一区二区三区公司| 成人蜜臀av电影| 人人超碰91尤物精品国产| 国产精品美女久久久久aⅴ| 欧美挠脚心视频网站| 国产精品99久久久久久似苏梦涵| 亚洲精品久久久久久国产精华液| 精品免费视频.| 91麻豆精品视频| 国产久卡久卡久卡久卡视频精品| 亚洲午夜精品网| 国产精品久久久久一区二区三区| 这里只有精品免费| proumb性欧美在线观看| 麻豆freexxxx性91精品| 亚洲一区二区三区在线看| 久久久国产精品午夜一区ai换脸| 欧美电影一区二区| 93久久精品日日躁夜夜躁欧美| 另类专区欧美蜜桃臀第一页| 亚洲免费观看高清完整| 国产日韩精品一区二区三区| 91精品国产欧美一区二区| 99久久精品国产网站| 国产麻豆精品在线| 男女性色大片免费观看一区二区 | 精品视频在线免费看| 岛国一区二区三区| 国模一区二区三区白浆| 日韩国产欧美三级| 午夜精品久久久久久久久久| 日韩美女精品在线| 中文字幕不卡在线观看| 久久综合久久久久88| 欧美一区二区视频网站| 欧美久久久久久久久| 欧美亚洲图片小说| 日本韩国一区二区三区| www.亚洲色图.com| 成人av片在线观看| 成人成人成人在线视频| 懂色av中文一区二区三区| 国产夫妻精品视频| 国产最新精品免费| 国产剧情一区二区| 粉嫩久久99精品久久久久久夜 | 国产精品久久久久久久裸模| 国产日韩精品一区二区三区| 日本一区二区视频在线| 久久久久久亚洲综合| 国产午夜亚洲精品理论片色戒| 精品国产乱码久久久久久免费| 欧美一区二区三区免费大片| 欧美va日韩va| 久久久综合视频| 亚洲欧洲精品一区二区三区不卡| 国产精品久久久久影院色老大| 成人免费在线观看入口| 亚洲色图制服丝袜| 一区二区三区自拍| 亚洲成人动漫在线观看| 日韩二区在线观看| 韩国女主播一区二区三区| 国模一区二区三区白浆| 国产精品一级二级三级| 99国产精品久| 制服丝袜av成人在线看| 日韩欧美国产三级| 国产女人18毛片水真多成人如厕| 日本一区二区三区在线观看| 亚洲精品免费一二三区| 日韩在线a电影| 韩国在线一区二区| 91色porny在线视频| 在线播放中文字幕一区| 欧美国产精品一区二区三区| 亚洲久草在线视频| 男女视频一区二区| 99国产精品久久久久| 欧美一区二区三区视频在线| 国产欧美日韩另类一区| 亚洲永久免费av| 国产美女视频91| 欧美中文字幕亚洲一区二区va在线| 欧美一区二区二区| 国产精品不卡视频| 精品一区二区av| 在线视频欧美精品| 久久久久久久网| 午夜视频在线观看一区二区三区| 国产精品1区2区3区| 欧美日韩国产乱码电影| 久久精品视频免费观看| 亚洲一卡二卡三卡四卡无卡久久| 久久99精品久久久久| 一本大道av一区二区在线播放| 精品国产精品一区二区夜夜嗨| 亚洲视频香蕉人妖| 国产一区二区三区精品欧美日韩一区二区三区| 不卡av在线网| 久久中文字幕电影| 日韩在线卡一卡二| 91农村精品一区二区在线| 久久午夜电影网| 日韩精品一卡二卡三卡四卡无卡| 成人精品小蝌蚪| 精品国产一区二区三区忘忧草| 亚洲电影一级片| 91丨九色丨黑人外教| 久久毛片高清国产| 久久国产精品一区二区| 欧美丰满嫩嫩电影| 亚洲不卡av一区二区三区| 成人aa视频在线观看| 久久欧美中文字幕| 精品一区精品二区高清| 欧美久久久久久久久| 亚洲福利视频一区| 日本道免费精品一区二区三区| 国产精品视频免费| 国产风韵犹存在线视精品| 精品国产亚洲在线| 国产原创一区二区| 国产亚洲精品bt天堂精选| 麻豆极品一区二区三区| 91精品婷婷国产综合久久| 亚洲成人自拍偷拍| 欧美日韩国产一级片| 亚洲午夜精品一区二区三区他趣| 在线观看日韩国产| 亚洲国产日韩精品| 欧美色大人视频|