?? cod.m
字號:
function [U, R, V] = cod(A, tol)
%COD Complete orthogonal decomposition.
% [U, R, V] = COD(A, TOL) computes a decomposition A = U*T*V,
% where U and V are unitary, T = [R 0; 0 0] has the same dimensions as
% A, and R is upper triangular and nonsingular of dimension rank(A).
% Rank decisions are made using TOL, which defaults to approximately
% LENGTH(A)*NORM(A)*EPS.
% By itself, COD(A, TOL) returns R.
% Reference:
% G. H. Golub and C. F. Van Loan, Matrix Computations, third
% edition, Johns Hopkins University Press, Baltimore, Maryland,
% 1996; sec. 5.4.2.
[m, n] = size(A);
% QR decomposition.
[U, R, P] = qr(A); % AP = UR
V = P'; % A = URV;
if nargin == 1, tol = max(m,n)*eps*abs(R(1,1)); end % |R(1,1)| approx NORM(A).
% Determine r = effective rank.
r = sum(abs(diag(R)) > tol);
r = r(1); % Fix for case where R is vector.
R = R(1:r,:); % Throw away negligible rows (incl. all zero rows, m>n).
if r ~= n
% Reduce nxr R' = r [L] to lower triangular form: QR' = [Lbar].
% n-r [M] [0]
[Q, R] = trap2tri(R');
V = Q*V;
R = R';
end
if nargout <= 1, U = R; end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -