亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? svm.m

?? 各種SVM分類算法
?? M
字號:
function net = svm(nin, kernel, kernelpar, C, use2norm, qpsolver, qpsize)% SVM - Create a Support Vector Machine classifier% %   NET = SVM(NIN, KERNEL, KERNELPAR, C, USE2NORM, QPSOLVER, QPSIZE)%   (All parameters from KERNELPAR on are optional).%   Initialise a structure NET containing the basic settings for a Support%   Vector Machine (SVM) classifier. The SVM is assumed to have input of%   dimension NIN, it works with kernel function KERNEL. If the kernel%   function needs extra parameters, these must be given in the array%   KERNELPAR. See function SVMKERNEL for a list of valid kernel%   functions.%%   The structure NET has the following fields:%   Basic SVM parameters:%     'type' = 'svm'%     'nin' = NIN   number of input dimensions%     'nout' = 1   number of output dimensions%     'kernel' = KERNEL   kernel function%     'kernelpar' = KERNELPAR   parameters for the kernel function%     'c' = C  Upper bound for the coefficients NET.alpha during%       training. Depending on the size of NET.c, the value is%       interpreted as follows:%       LENGTH(NET.c)==1: Upper bound for all coefficients.%       LENGTH(NET.c)==2: Different upper bounds for positive (+1) and%       negative (-1) examples. NET.c(1) is the bound for the positive,%       NET.c(2) is the bound for the negative examples.%       LENGTH(NET.c)==N, where N is the number of examples that are%       passed to SVMTRAIN: NET.c(i) is the upper bound for the%       coefficient NET.alpha(i) associated with example i.%       Default value: 1%     'use2norm' = USE2NORM: If non-zero, the training procedure will use%       an objective function that involves the 2norm of the errors on%       the training points, otherwise the 1norm is used (standard%       SVM). Default value: 0.%%   Fields that will be set during training with SVMTRAIN:%     'nbexamples' = Number of training examples%     'alpha' = After training, this field contains a column vector with%       coefficients (weights) for each training example. NET.alpha is%       not used in any subsequent SVM routines, it can be removed after%       training.%     'svind' = After training, this field contains the indices of those%       training examples that are Support Vectors (those with a large%       enough value of alpha)%     'sv' = Contains all the training examples that are Support Vectors.%     'svcoeff' = After training, this field is the product of NET.alpha%       times the label of the corresponding training example, for all%       examples that are Support Vectors. It is given in the same order%       as the examples are given in NET.sv.%     'bias' = The linear term of the SVM decision function.%     'normalw' = Normal vector of the hyperplane that separates the%       examples. This is only computed if a linear kernel%       NET.kernel='linear' is used.%%   Parameters specifically for SVMTRAIN (rarely need to be changed):%     'qpsolver' = QPSOLVER. QPSOLVER must be one of 'quadprog', 'loqo',%       'qp' or empty for auto-detect. Name of the function that solves%       the quadratic programming problems in SVMTRAIN.%       Default value: empty (auto-detect).%     'qpsize' =  QPSIZE. The maximum number of points given to the QP%       solver. Default value: 50.%     'alphatol' = Tolerance for all comparisons that involve the%       coefficients NET.alpha. Default value: 1E-2.%     'kkttol' = Tolerance for checking the KKT conditions (termination%       criterion) Default value: 5E-2. Lower this when high precision is%       required.%%   See also:%   SVMKERNEL, SVMTRAIN, SVMFWD%% % Copyright (c) Anton Schwaighofer (2001)% $Revision: 1.6 $ $Date: 2002/01/07 19:51:49 $% mailto:anton.schwaighofer@gmx.net% % This program is released unter the GNU General Public License.% if nargin < 7,  qpsize = 50;endif nargin < 6,  qpsolver = '';endif nargin < 5,  use2norm = 0;endif nargin < 4,  C = 1;endif nargin < 3,  kernelpar = [];endnet.type = 'svm';net.nin = nin;net.nout = 1;net.kernel = kernel;net.kernelpar = kernelpar;net.c = C;net.use2norm = use2norm;net.nbexamples = 0;net.alpha = [];net.svcoeff = [];net.sv = [];net.svind = [];net.bias = [];net.normalw = [];net.qpsolver = qpsolver;net.qpsize = qpsize;net.alphatol = 1e-2;net.kkttol = 5e-2;net.chunksize = 500;%     'chunksize' = Large matrix operations (for example when evaluating%       the kernel functions) are split up into submatrices with maximum%       size [NET.chunksize, NET.chunksize]. Default value: 500net.recompute = Inf;%     'recompute' = During training, the SVM outputs are updated%       iteratively. After NET.recompute iterations the SVM outputs are%       built again from scratch. Lower this when high precision is required.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
性感美女久久精品| 日一区二区三区| 欧美一区二区三区免费观看视频| 国产久卡久卡久卡久卡视频精品| 一区二区三区小说| 久久久美女毛片| 欧美一区二区三区成人| 色综合中文综合网| 欧美视频你懂的| 波多野结衣91| 极品美女销魂一区二区三区| 偷拍与自拍一区| 玉米视频成人免费看| 国产精品毛片久久久久久| 亚洲精品在线电影| 欧美日韩成人综合在线一区二区 | 欧美一区二区网站| 欧美性大战久久久| 91极品美女在线| av在线不卡免费看| 国产成人在线视频播放| 激情五月激情综合网| 日韩成人一级片| 午夜久久电影网| 亚洲一级二级在线| 亚洲专区一二三| 亚洲精品一二三| 亚洲欧美日韩成人高清在线一区| 国产日韩欧美精品综合| 久久一夜天堂av一区二区三区| 51午夜精品国产| 91精品国产综合久久久蜜臀图片| 欧美日韩一级黄| 欧美视频在线观看一区二区| 色综合久久久网| 色综合久久中文字幕| 一本色道久久综合亚洲91| 99国产精品久久久久久久久久久| 成人激情校园春色| 岛国一区二区三区| 不卡一区中文字幕| 91丨九色丨国产丨porny| 不卡一区在线观看| 91久久一区二区| 欧美色图在线观看| 欧美肥妇bbw| 欧美大片一区二区三区| 久久综合久久综合九色| 国产亚洲综合色| 国产精品无遮挡| 亚洲欧美日韩国产手机在线| 一区二区三区在线视频播放| 亚洲va韩国va欧美va精品| 男男gaygay亚洲| 精品在线免费观看| 国产91高潮流白浆在线麻豆| 一本色道a无线码一区v| 欧美综合在线视频| 欧美丰满嫩嫩电影| 亚洲精品一区二区三区香蕉| 国产精品毛片a∨一区二区三区| 亚洲六月丁香色婷婷综合久久| 亚洲成a人v欧美综合天堂| 奇米亚洲午夜久久精品| 国产激情视频一区二区在线观看| 91一区二区在线| 3d成人h动漫网站入口| 久久天堂av综合合色蜜桃网| 日韩美女久久久| 午夜电影网一区| 国产乱人伦精品一区二区在线观看| 成人av在线影院| 在线看国产一区二区| 日韩精品一区二区三区在线播放 | www.欧美日韩| 欧美三级一区二区| 精品久久久久久久久久久久久久久久久 | 亚洲大片免费看| 国产精品一区二区不卡| 欧美在线综合视频| 精品国产乱码久久久久久夜甘婷婷 | 99精品1区2区| 欧美va亚洲va在线观看蝴蝶网| 国产精品国产精品国产专区不片| 亚洲成人先锋电影| 成人免费黄色在线| 欧美一区国产二区| 亚洲人xxxx| 激情国产一区二区| 欧美专区亚洲专区| 欧美极品aⅴ影院| 石原莉奈一区二区三区在线观看| 国产成人精品www牛牛影视| 在线播放91灌醉迷j高跟美女 | 久久美女高清视频| 亚洲电影一级片| 97超碰欧美中文字幕| xvideos.蜜桃一区二区| 午夜国产精品一区| 色综合天天做天天爱| 久久精子c满五个校花| 三级一区在线视频先锋 | 强制捆绑调教一区二区| 色婷婷综合久色| 国产精品天天看| 极品瑜伽女神91| 欧美人与z0zoxxxx视频| 中文字幕亚洲电影| 国产一区在线看| 日韩一级精品视频在线观看| 一区二区三区在线免费| 国产sm精品调教视频网站| 欧美一区二区三区视频在线| 亚洲一区二区中文在线| 99综合电影在线视频| 26uuu久久综合| 美女视频黄频大全不卡视频在线播放| 99久久国产综合精品色伊| 26uuu亚洲婷婷狠狠天堂| 美洲天堂一区二卡三卡四卡视频| 成人激情av网| 中文在线一区二区| 国产一区免费电影| 精品国精品国产尤物美女| 首页国产欧美日韩丝袜| 欧美日韩视频在线第一区| 亚洲免费电影在线| 91在线视频免费观看| 综合色中文字幕| 91片在线免费观看| 成人免费在线播放视频| 不卡视频免费播放| 日本一区二区三区四区| 国产精品1区二区.| 久久久精品日韩欧美| 国产一区激情在线| 国产亚洲成av人在线观看导航| 国产一二精品视频| 国产精品三级在线观看| 99久久国产综合精品色伊| 国产精品欧美一级免费| 99久久精品久久久久久清纯| 最新高清无码专区| 91免费视频观看| 亚洲丶国产丶欧美一区二区三区| 精品污污网站免费看| 天天综合天天综合色| 日韩精品一区二区三区在线播放 | 一个色妞综合视频在线观看| 欧美影视一区在线| 男人操女人的视频在线观看欧美 | 午夜国产精品影院在线观看| 欧美一级欧美一级在线播放| 狠狠久久亚洲欧美| 欧美国产一区二区| 色一情一伦一子一伦一区| 亚洲国产色一区| 日韩亚洲欧美高清| 国产精品一区二区久久精品爱涩 | 欧美人牲a欧美精品| 日本亚洲天堂网| 日韩免费电影一区| 经典三级一区二区| 中文乱码免费一区二区| 国产成人a级片| 国产精品网站在线| 91国偷自产一区二区使用方法| 欧美日韩国产123区| 日韩高清在线不卡| 久久久久久久久久久久久女国产乱| 99久久精品国产毛片| 亚洲狠狠爱一区二区三区| 精品国产人成亚洲区| 成人精品小蝌蚪| 日日摸夜夜添夜夜添国产精品 | 大陆成人av片| 亚洲va国产va欧美va观看| 久久久久久久久岛国免费| 欧美性大战久久久久久久| 激情欧美一区二区| 亚洲一区日韩精品中文字幕| 久久无码av三级| 欧美日韩专区在线| 成人免费毛片aaaaa**| 日本一不卡视频| 亚洲人成精品久久久久久| 久久中文字幕电影| 欧美影视一区二区三区| 福利视频网站一区二区三区| 五月激情六月综合| 亚洲欧洲性图库| 久久婷婷国产综合国色天香| 欧美日韩免费观看一区三区| 成人精品小蝌蚪| 另类小说欧美激情| 亚洲午夜三级在线| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 99精品在线免费| 久久97超碰色| 视频一区国产视频|