亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? crossvalidate.m

?? LS-SVMlab1.5bw可以實(shí)現(xiàn)各種模式分類(lèi)
?? M
字號(hào):
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产视频911| 欧美激情一区二区三区蜜桃视频| 免费不卡在线观看| 国产精品日日摸夜夜摸av| 欧美性猛交xxxx黑人交| 国产一区二区不卡| 五月婷婷久久丁香| 亚洲黄色av一区| 国产亚洲视频系列| 日韩精品一区二区三区在线| 欧美综合一区二区| 高清日韩电视剧大全免费| 日韩国产成人精品| 玉足女爽爽91| 专区另类欧美日韩| 国产精品色眯眯| 精品盗摄一区二区三区| 欧美日韩一级片在线观看| 成人av影视在线观看| 久久99精品久久只有精品| 亚洲国产精品久久不卡毛片 | 色综合久久88色综合天天免费| 美女网站在线免费欧美精品| 亚洲国产精品视频| 亚洲精品欧美在线| 亚洲欧洲成人精品av97| 久久久99久久| 久久伊人蜜桃av一区二区| 51精品秘密在线观看| 欧美色图第一页| 99re这里只有精品视频首页| 高清在线观看日韩| 大白屁股一区二区视频| 国产白丝精品91爽爽久久| 精品一区二区三区免费视频| 久久精品免费观看| 麻豆一区二区三区| 蜜桃视频一区二区三区在线观看| 日韩av中文字幕一区二区三区| 亚洲成a人片综合在线| 亚洲国产精品一区二区久久 | 国产一区视频在线看| 卡一卡二国产精品| 精品一区二区在线视频| 精品一区二区三区在线视频| 精彩视频一区二区三区| 久久精品99国产精品| 国产一区久久久| 国产高清不卡二三区| 国产成人在线视频网站| 99视频精品在线| 91片黄在线观看| 色天天综合久久久久综合片| 在线精品视频免费播放| 欧美日韩中文字幕一区| 欧美一区二区三区在线看| 日韩欧美另类在线| 国产亚洲欧洲997久久综合| 国产日韩欧美精品在线| 亚洲欧美日本韩国| 亚洲午夜久久久久久久久电影网| 日韩精品成人一区二区三区| 麻豆精品一二三| 丁香啪啪综合成人亚洲小说| 91香蕉视频mp4| 欧美日韩国产一级片| 欧美猛男gaygay网站| 日韩欧美国产高清| 欧美国产激情一区二区三区蜜月| 综合在线观看色| 日韩和欧美的一区| 国产精品一二三区| 日本道精品一区二区三区| 4438x亚洲最大成人网| 337p粉嫩大胆色噜噜噜噜亚洲| 中文字幕第一区| 亚洲国产精品一区二区久久| 精品在线你懂的| 91视频一区二区| 日韩一区二区三区在线视频| 中文字幕 久热精品 视频在线| 亚洲成a人片在线观看中文| 精品一区二区三区欧美| 色综合视频在线观看| 日韩欧美国产一区二区三区| 自拍偷拍亚洲综合| 美女爽到高潮91| 色婷婷久久久综合中文字幕| 精品入口麻豆88视频| 中文字幕一区日韩精品欧美| 蜜桃一区二区三区四区| 色综合久久久久综合| 精品成人佐山爱一区二区| 亚洲视频综合在线| 精品一区二区在线视频| 欧美三级一区二区| 日本一区二区三级电影在线观看| 婷婷亚洲久悠悠色悠在线播放| 福利一区二区在线观看| 91精品婷婷国产综合久久竹菊| 中文字幕日韩精品一区| 精品亚洲免费视频| 欧美日韩精品欧美日韩精品一| 中文字幕av一区二区三区| 久久精品理论片| 欧美在线看片a免费观看| 国产日本亚洲高清| 狠狠色丁香久久婷婷综合丁香| 欧美日韩大陆一区二区| 中文字幕一区不卡| 国产激情一区二区三区四区| 日韩一区二区三区四区| 夜夜夜精品看看| 色综合一区二区三区| 久久精品亚洲精品国产欧美| 免费不卡在线观看| 欧美伦理电影网| 亚洲国产综合人成综合网站| 91在线播放网址| 综合激情成人伊人| 成人毛片在线观看| 国产人伦精品一区二区| 久久99国产精品久久99果冻传媒| 欧美日韩一区二区三区高清| 亚洲欧洲av一区二区三区久久| 国产精品996| 精品福利一区二区三区| 日韩高清欧美激情| 欧美日韩视频第一区| 亚洲国产欧美在线| 欧洲亚洲国产日韩| 亚洲一区二区三区不卡国产欧美| 91浏览器在线视频| 一区二区三区成人| 欧美影院一区二区三区| 一区二区三区91| 欧美午夜免费电影| 亚洲午夜电影在线| 欧美精品第一页| 美国毛片一区二区三区| 欧美电视剧在线看免费| 国内精品国产成人国产三级粉色| 日韩欧美一区二区视频| 久久99久久精品| 久久精品免视看| 成人国产精品免费观看| 中文字幕一区二区三区精华液 | 一区二区三区欧美在线观看| 91蜜桃网址入口| 亚洲国产中文字幕| 日韩一区二区三区四区五区六区| 免费成人在线观看| 久久久综合九色合综国产精品| 国产1区2区3区精品美女| 中文幕一区二区三区久久蜜桃| av资源站一区| 亚洲精品成人在线| 精品视频在线免费| 麻豆久久一区二区| 国产欧美日韩在线观看| 97国产一区二区| 亚洲成av人**亚洲成av**| 日韩欧美国产综合| 成人黄色片在线观看| 一区二区三区精品视频在线| 欧美一区二区三区在线观看| 国产精品一区久久久久| 亚洲欧美乱综合| 日韩欧美在线1卡| www.欧美.com| 水野朝阳av一区二区三区| 久久久蜜桃精品| 在线观看视频一区二区欧美日韩| 蜜臀va亚洲va欧美va天堂| 国产精品免费视频网站| 欧美三级蜜桃2在线观看| 久久国产夜色精品鲁鲁99| 中文字幕欧美一| 日韩欧美视频一区| 91原创在线视频| 国产真实乱对白精彩久久| 亚洲欧洲综合另类| 日韩写真欧美这视频| 99麻豆久久久国产精品免费| 婷婷久久综合九色综合绿巨人 | 在线播放亚洲一区| 国产麻豆视频精品| 偷窥国产亚洲免费视频| 国产日韩在线不卡| 欧美久久久一区| 99精品久久久久久| 久久se精品一区精品二区| 一区二区三区 在线观看视频| 久久蜜桃av一区精品变态类天堂| 欧美在线影院一区二区| 国产不卡视频在线观看| 日本不卡123| 亚洲国产精品久久不卡毛片| 国产精品日日摸夜夜摸av| 日韩精品中午字幕|