?? optional.hpp
字號:
// Copyright (C) 2003, Fernando Luis Cacciola Carballal.//// Use, modification, and distribution is subject to the Boost Software// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//// See http://www.boost.org/lib/optional for documentation.//// You are welcome to contact the author at:// fernando_cacciola@hotmail.com//#ifndef BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP#define BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP#include<new>#include<algorithm>#include "boost/config.hpp"#include "boost/assert.hpp"#include "boost/type.hpp"#include "boost/type_traits/alignment_of.hpp"#include "boost/type_traits/type_with_alignment.hpp"#include "boost/type_traits/remove_reference.hpp"#include "boost/type_traits/is_reference.hpp"#include "boost/mpl/if.hpp"#include "boost/mpl/bool.hpp"#include "boost/mpl/not.hpp"#include "boost/detail/reference_content.hpp"#include "boost/detail/none_t.hpp"#include "boost/utility/compare_pointees.hpp"#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)// VC6.0 has the following bug:// When a templated assignment operator exist, an implicit conversion// constructing an optional<T> is used when assigment of the form:// optional<T> opt ; opt = T(...);// is compiled.// However, optional's ctor is _explicit_ and the assignemt shouldn't compile.// Therefore, for VC6.0 templated assignment is disabled.//#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT#endif#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)// VC7.0 has the following bug:// When both a non-template and a template copy-ctor exist// and the templated version is made 'explicit', the explicit is also// given to the non-templated version, making the class non-implicitely-copyable.//#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR#endif#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) || BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION,<=700)// AFAICT only VC7.1 correctly resolves the overload set// that includes the in-place factory taking functions,// so for the other VC versions, in-place factory support// is disabled#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT#endif#if BOOST_WORKAROUND(__BORLANDC__, <= 0x551)// BCB (5.5.1) cannot parse the nested template struct in an inplace factory.#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT#endif#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) \ && BOOST_WORKAROUND(__BORLANDC__, <= 0x564)// BCB (up to 5.64) has the following bug:// If there is a member function/operator template of the form// template<class Expr> mfunc( Expr expr ) ;// some calls are resolved to this even if there are other better matches.// The effect of this bug is that calls to converting ctors and assignments// are incrorrectly sink to this general catch-all member function template as shown above.#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION#endifnamespace boost {class in_place_factory_base ;class typed_in_place_factory_base ;namespace optional_detail {// This local class is used instead of that in "aligned_storage.hpp"// because I've found the 'official' class to ICE BCB5.5// when some types are used with optional<>// (due to sizeof() passed down as a non-type template parameter)template <class T>class aligned_storage{ // Borland ICEs if unnamed unions are used for this! union dummy_u { char data[ sizeof(T) ]; BOOST_DEDUCED_TYPENAME type_with_alignment< ::boost::alignment_of<T>::value >::type aligner_; } dummy_ ; public: void const* address() const { return &dummy_.data[0]; } void * address() { return &dummy_.data[0]; }} ;template<class T>struct types_when_isnt_ref{ typedef T const& reference_const_type ; typedef T & reference_type ; typedef T const* pointer_const_type ; typedef T * pointer_type ; typedef T const& argument_type ;} ;template<class T>struct types_when_is_ref{ typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ; typedef raw_type& reference_const_type ; typedef raw_type& reference_type ; typedef raw_type* pointer_const_type ; typedef raw_type* pointer_type ; typedef raw_type& argument_type ;} ;struct optional_tag {} ;template<class T>class optional_base : public optional_tag{ private : typedef BOOST_DEDUCED_TYPENAME detail::make_reference_content<T>::type internal_type ; typedef aligned_storage<internal_type> storage_type ; typedef types_when_isnt_ref<T> types_when_not_ref ; typedef types_when_is_ref<T> types_when_ref ; typedef optional_base<T> this_type ; protected : typedef T value_type ; typedef mpl::true_ is_reference_tag ; typedef mpl::false_ is_not_reference_tag ; typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ; typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ; typedef bool (this_type::*unspecified_bool_type)() const; typedef BOOST_DEDUCED_TYPENAME types::reference_type reference_type ; typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ; typedef BOOST_DEDUCED_TYPENAME types::pointer_type pointer_type ; typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type pointer_const_type ; typedef BOOST_DEDUCED_TYPENAME types::argument_type argument_type ; // Creates an optional<T> uninitialized. // No-throw optional_base() : m_initialized(false) {} // Creates an optional<T> uninitialized. // No-throw optional_base ( detail::none_t const& ) : m_initialized(false) {} // Creates an optional<T> initialized with 'val'. // Can throw if T::T(T const&) does optional_base ( argument_type val ) : m_initialized(false) { construct(val); } // Creates a deep copy of another optional<T> // Can throw if T::T(T const&) does optional_base ( optional_base const& rhs ) : m_initialized(false) { if ( rhs.is_initialized() ) construct(rhs.get_impl()); } // This is used for both converting and in-place constructions. // Derived classes use the 'tag' to select the appropriate // implementation (the correct 'construct()' overload) template<class Expr> explicit optional_base ( Expr const& expr, Expr const* tag ) : m_initialized(false) { construct(expr,tag); } // No-throw (assuming T::~T() doesn't) ~optional_base() { destroy() ; } // Assigns from another optional<T> (deep-copies the rhs value) // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED void assign ( optional_base const& rhs ) { destroy(); if ( rhs.is_initialized() ) construct(rhs.get_impl()); } // Assigns from a T (deep-copies the rhs value) // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED void assign ( argument_type val ) { destroy(); construct(val); } // Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED // No-throw (assuming T::~T() doesn't) void assign ( detail::none_t const& ) { destroy(); }#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT template<class Expr> void assign_expr ( Expr const& expr, Expr const* tag ) { destroy(); construct(expr,tag); }#endif public : // Destroys the current value, if any, leaving this UNINITIALIZED // No-throw (assuming T::~T() doesn't) void reset() { destroy(); } // Replaces the current value -if any- with 'val' // Basic Guarantee: If T::T( T const& ) throws this is left UNINITIALIZED. void reset ( argument_type val ) { assign(val); } // Returns a pointer to the value if this is initialized, otherwise, // returns NULL. // No-throw pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; } pointer_type get_ptr() { return m_initialized ? get_ptr_impl() : 0 ; } bool is_initialized() const { return m_initialized ; } protected : void construct ( argument_type val ) { new (m_storage.address()) internal_type(val) ; m_initialized = true ; }#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT // Constructs in-place using the given factory template<class Expr> void construct ( Expr const& factory, in_place_factory_base const* ) { BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ; factory.BOOST_NESTED_TEMPLATE apply<value_type>(m_storage.address()) ; m_initialized = true ; } // Constructs in-place using the given typed factory void construct ( Expr const& factory, typed_in_place_factory_base const* ) { BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ; factory.apply(m_storage.address()) ; m_initialized = true ; }#endif // Constructs using any expression implicitely convertible to the single argument // of a one-argument T constructor. // Converting constructions of optional<T> from optional<U> uses this function with // 'Expr' being of type 'U' and relying on a converting constructor of T from U. template<class Expr> void construct ( Expr const& expr, void const* ) { new (m_storage.address()) internal_type(expr) ; m_initialized = true ; }#ifdef BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION // BCB5.64 (and probably lower versions) workaround. // The in-place factories are supported by means of catch-all constructors // and assignment operators (the functions are parameterized in terms of // an arbitrary 'Expr' type) // This compiler incorrectly resolves the overload set and sinks optional<T> and optional<U> // to the 'Expr'-taking functions even though explicit overloads are present for them. // Thus, the following overload is needed to properly handle the case when the 'lhs' // is another optional. // // For VC<=70 compilers this workaround dosen't work becasue the comnpiler issues and error // instead of choosing the wrong overload // // Notice that 'Expr' will be optional<T> or optional<U> (but not optional_base<..>) template<class Expr> void construct ( Expr const& expr, optional_tag const* ) { if ( expr.is_initialized() ) { // An exception can be thrown here. // It it happens, THIS will be left uninitialized. new (m_storage.address()) internal_type(expr.get()) ; m_initialized = true ; } }#endif void destroy() { if ( m_initialized ) destroy_impl(is_reference_predicate()) ; } unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; } reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; } reference_type get_impl() { return dereference(get_object(), is_reference_predicate() ) ; } pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; } pointer_type get_ptr_impl() { return cast_ptr(get_object(), is_reference_predicate() ) ; } private : // internal_type can be either T or reference_content<T> internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); } internal_type * get_object() { return static_cast<internal_type *> (m_storage.address()); } // reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference. reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; } reference_type dereference( internal_type* p, is_not_reference_tag ) { return *p ; } reference_const_type dereference( internal_type const* p, is_reference_tag ) const { return p->get() ; } reference_type dereference( internal_type* p, is_reference_tag ) { return p->get() ; }#if BOOST_WORKAROUND(__BORLANDC__, <= 0x564) void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->internal_type::~internal_type() ; m_initialized = false ; }#else void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->T::~T() ; m_initialized = false ; }#endif void destroy_impl ( is_reference_tag ) { m_initialized = false ; } // If T is of reference type, trying to get a pointer to the held value must result in a compile-time error. // Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case, // the following olverloads are used to filter out the case and guarantee an error in case of T being a reference. pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -