?? status.c
字號:
/****************************************************************File Name: status.C Author: Tian Zhang, CS Dept., Univ. of Wisconsin-Madison, 1995 Copyright(c) 1995 by Tian Zhang All Rights ReservedPermission to use, copy and modify this software must be grantedby the author and provided that the above copyright notice appear in all relevant copies and that both that copyright notice and this permission notice appear in all relevant supporting documentations. Comments and additions may be sent the author at zhang@cs.wisc.edu.******************************************************************/#include "global.h"#include "util.h"#include "vector.h"#include "rectangle.h"#include "cfentry.h"#include "cutil.h"#include "parameter.h"#include "status.h"#include "cftree.h"#include "path.h"#include "contree.h"#include "buffer.h"#include "recyqueue.h"#include "hierarchy.h"Stat::Stat(char *str) {// initialize dynamic status informationstrcpy(name,str);Bars=NULL;Phase=1;Passi=0;CurFt=0.0;MemUsed=0;TreeSize=0; PrevEntryCnt = 0;CurrEntryCnt = 0;PrevDataCnt = 0;CurrDataCnt = 0;NoiseCnt = 0;AvgDensity = 0;OldRoot = NULL;NewRoot = NULL;OldLeafHead = NULL;NewLeafHead = NULL;RestLeafPtr = NULL;RestLeafK = 0;SplitBuffer = NULL;OutlierQueue = NULL;OStats=NULL;Entries = NULL;OutlierEntryCnt=0;OutlierTupleCnt=0;}Stat::~Stat() {if (Bars) delete [] Bars;if (NewRoot!=NULL) NewRoot->free_nonleaf(this);if (NewLeafHead!=NULL) NewLeafHead->free_leaf(this);if (SplitBuffer!=NULL) delete SplitBuffer;if (OutlierQueue!=NULL) delete OutlierQueue;if (OStats!=NULL) delete OStats;if (Entries) delete [] Entries;}void Stat::Accept1A(const Entry &ent) {// keep trying until accepted anywaywhile (1) { // 1: memory available, accepted if (MemUsed<=MemSize) { CurrDataCnt+=ent.n; Ranges+=ent.sx; // valid only for Stats, not for OStats OldRoot->AdjustTree(this,ent); OldRoot=NewRoot; return; } // 2: buffer splits: accepted if (SplitBuffer!=NULL && !SplitBuffer->Full()) { CurrDataCnt+=ent.n; Ranges+=ent.sx; // valid only for Stats, not for OStats if (OldRoot->AbsorbEntry2(this,ent)==FALSE) SplitBuffer->AddEnt(ent); return; } // 3: memory out and buffer full: // increase threshold, throw outliers, rebuild tree, // re-try to see if acceptedcout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" " <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl; RebuiltTree1A(1);cout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" " <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl; if (SplitBuffer!=NULL) ScanSplitBuffer(); if (OutlierQueue!=NULL && OutlierQueue->Full()) ScanOutlierQueue(); }}void Stat::Accept1B(const Entry &ent) {// keep trying until accepted anywaywhile (1) { // 1: memory available, accepted if (MemUsed<=MemSize) { CurrDataCnt+=ent.n; Ranges+=ent.sx; // valid only for Stats, not for OStats OldRoot->AdjustTree(this,ent); OldRoot=NewRoot; return; } // 2: buffer splits: accepted if (SplitBuffer!=NULL && !SplitBuffer->Full()) { CurrDataCnt+=ent.n; Ranges+=ent.sx; // valid only for Stats, not for OStats if (OldRoot->AbsorbEntry2(this,ent)==FALSE) SplitBuffer->AddEnt(ent); return; } // 3: memory out and buffer full: // increase threshold, throw outliers, rebuild tree, // re-try to see if acceptedcout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" " <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl; RebuiltTree1B(1);cout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" " <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl; if (SplitBuffer!=NULL) ScanSplitBuffer(); if (OutlierQueue!=NULL && OutlierQueue->Full()) ScanOutlierQueue(); }}// TZ: work herevoid Stat::SelectInitFt1() { if (InitFt<=0.0) CurFt=0.0; else CurFt=InitFt*InitFt; }void Stat::SelectFtB(){ if (CurFt==0.0) CurFt=pow(AvgDNNScanLeafEntry(BDtype),2.0); else CurFt=MaxOne(CurFt,pow(AvgDNNScanLeafEntry(BDtype),2.0));}void Stat::SelectFtA(){ if (CurFt==0.0) CurFt=pow(AvgDNNScanLeafEntry(BDtype),2.0); else CurFt=MaxOne(CurFt,pow(AvgDNNScanLeafEntry(BDtype),2.0));}void Stat::RebuiltTree1B(short inc_flag){ AvgDensity=1.0*NewRoot->N()/(1.0*CurrEntryCnt); if (inc_flag==1 && Passi%StayTimes==0) SelectFtB(); Passi++; switch (RebuiltAlg) { case 0: ScanLeaf1A(); break; case 1: CompactTree1A(); break; case 2: ShiftTree1A(); break; }}void Stat::RebuiltTree1A(short inc_flag){ AvgDensity=1.0*NewRoot->N()/(1.0*CurrEntryCnt); if (inc_flag==1 && Passi%StayTimes==0) SelectFtA(); Passi++; switch (RebuiltAlg) { case 0: ScanLeaf1A(); break; case 1: CompactTree1A(); break; case 2: ShiftTree1A(); break; }}// shift the tree:void Stat::ShiftTree1A(){int i;Entry ent;ent.Init(Dimension);Node *tmpnode;MakeNewTree();int height=OldRoot->Depth();Path CurrPath(height), BestPath(height);// initialize CurrPath to the leftmost path (leaf entry) in old treetmpnode=OldRoot;for (i=0; i<height; i++) { CurrPath.Push(0,tmpnode); tmpnode=tmpnode->TheChild(0); }tmpnode=CurrPath.TopLeaf();while (tmpnode!=NULL) { // Process all entries in the leaf node for (i=0; i<tmpnode->actsize; i++) { ent=tmpnode->entry[i]; if (strcmp(name,"outlier")!=0 && ent.n<NoiseRate*AvgDensity && OutlierQueue!=NULL) // write out all qualified outliers OutlierQueue->AddEnt(ent,this); else { // find BestPath for current entry in new tree BestPath.Reset(); if (NewRoot->BestFitPath2(this,ent,BestPath)==TRUE) BestPath.AddonPath(this,ent,NewRoot); else CurrPath.AddonLeaf(this,ent,NewRoot); } } // Process next leaf node tmpnode=CurrPath.NextRightLeafFreeSpace(this); if (tmpnode!=NULL) CurrPath.InsertLeaf(this,NewRoot); }OldRoot=NewRoot;OldLeafHead=NewLeafHead;NewRoot->FreeEmptyNode(this);}// compact the tree:void Stat::CompactTree1A(){int i;Entry ent;ent.Init(Dimension);MarkNewTree();int height = OldRoot->Depth();Path CurrPath(height), BestPath(height);// initialize to the leftmost path (or leaf entry) in the treeNode *tmpnode=OldRoot;for (i=0; i<height; i++) { CurrPath.Push(0,tmpnode); tmpnode=tmpnode->TheChild(0); }while (CurrPath.Exists()) { // takeoff current path (or leaf entry) from the tree ent=*(CurrPath.TopLeafEntry()); CurrPath.TakeoffPath(ent); if (strcmp(name,"outlier")!=0 && ent.n<NoiseRate*AvgDensity && OutlierQueue!=NULL) { // write out all qualified outliers OutlierQueue->AddEnt(ent,this); CurrPath.CollectSpace(this); } else {// find bestpath for current leaf entry in tree and put back BestPath.Reset(); if (OldRoot->BestFitPath2(this,ent,BestPath)==TRUE && BestPath<CurrPath) { BestPath.AddonPath(this,ent,OldRoot); CurrPath.CollectSpace(this); } else { CurrPath.AddonPath(this,ent,OldRoot); CurrEntryCnt++; CurrPath.NextRightPath(); } } }}// responsible for old leaves// does not guarantee S2<=S1 if T2>=T1.void Stat::ScanLeaf1A(){int k = 0;Entry ent;ent.Init(Dimension);short res=TRUE;StartNewTree();while (res!=FALSE) { res = NextEntryFreeOldLeafHead(k,ent); if (res==TRUE) { if (strcmp(name,"outlier")!=0 && ent.n<NoiseRate*AvgDensity && OutlierQueue!=NULL) // write out all qualified outliers OutlierQueue->AddEnt(ent,this); else { OldRoot->AdjustTree(this,ent); OldRoot = NewRoot; } } } }void Stat::ScanSplitBuffer(){Entry ent;ent.Init(Dimension);int count=SplitBuffer->CountEntry();while (count>0 && MemUsed<=MemSize) { SplitBuffer->DeleteEnt(ent); count--; OldRoot->AdjustTree(this,ent); OldRoot=NewRoot; }while (count>0) { SplitBuffer->DeleteEnt(ent); count--; if (OldRoot->AbsorbEntry2(this,ent)==FALSE) if (OutlierQueue!=NULL) OutlierQueue->AddEnt(ent,this); else SplitBuffer->AddEnt(ent); }}void Stat::ScanOutlierQueue(){Entry ent;ent.Init(Dimension);int count=OutlierQueue->CountEntry();// without secondary tree for outliersif (OStats==NULL) { while (count>0) { OutlierQueue->DeleteEnt(ent); count--; if (OldRoot->AbsorbEntry1(this,ent)==FALSE) OutlierQueue->AddEnt(ent,this); } }// with secondary tree for outlierselse { // if can't absorb by main tree, accept to outlier tree while (count>0) { OutlierQueue->DeleteEnt(ent); count--; if (OldRoot->AbsorbEntry1(this,ent)==FALSE) { switch (OStats->Phase1Scheme) { case 0: OStats->Accept1A(ent); break; case 1: OStats->Accept1B(ent); break; default: print_error("ScanOutlierQueue","Invalid Phase1Scheme"); break; } NoiseCnt+=ent.n; } } }}void Stat::Inherit(const Stat *Stats) { Dimension=Stats->Dimension; PageSize=Stats->PageSize; MemSize=Stats->OutlierTreeSize; BufferSize=0; QueueSize=0; OutlierTreeSize=0; BDtype=Stats->BDtype; Ftype=Stats->Ftype; Phase1Scheme=Stats->Phase1Scheme; RebuiltAlg=Stats->RebuiltAlg; StayTimes=Stats->StayTimes; NoiseRate=Stats->NoiseRate; Range=Stats->Range; CFDistr=Stats->CFDistr; H=Stats->H; K=Stats->K; InitFt=Stats->InitFt; Ft=Stats->Ft; Gtype=Stats->Gtype; GDtype=Stats->GDtype; Qtype=Stats->Qtype; RefineAlg=Stats->RefineAlg; NoiseFlag=Stats->NoiseFlag; MaxRPass=Stats->MaxRPass; Ranges.Init(Dimension); }istream& operator>>(istream &fi,Stat *Stats) {fi>>Stats->WMflag;Stats->W.Init(Stats->Dimension);fi>>Stats->W;Stats->M.Init(Stats->Dimension);fi>>Stats->M;fi>>Stats->PageSize;Stats->MemSize/=Stats->PageSize;Stats->BufferSize/=Stats->PageSize;Stats->QueueSize/=Stats->PageSize;Stats->OutlierTreeSize/=Stats->PageSize;fi>>Stats->BDtype;fi>>Stats->Ftype;fi>>Stats->Phase1Scheme;fi>>Stats->RebuiltAlg;fi>>Stats->StayTimes;fi>>Stats->NoiseRate;fi>>Stats->Range;fi>>Stats->CFDistr;fi>>Stats->H;Stats->Bars=new int[Stats->Dimension];for (int i=0;i<Stats->Dimension;i++) fi>>Stats->Bars[i];fi>>Stats->K;fi>>Stats->InitFt;fi>>Stats->Ft;fi>>Stats->Gtype;fi>>Stats->GDtype;fi>>Stats->Qtype;fi>>Stats->RefineAlg;fi>>Stats->NoiseFlag;fi>>Stats->MaxRPass;Stats->Ranges.Init(Stats->Dimension);if (Stats->BufferSize>0) Stats->SplitBuffer=new BufferClass(Stats);if (Stats->QueueSize>0) Stats-> OutlierQueue=new RecyQueueClass(Stats);if (Stats->OutlierTreeSize>0) { Stats->OStats=new Stat("outlier"); Stats->OStats->Inherit(Stats); }return fi;}ifstream& operator>>(ifstream &fi,Stat *Stats) {fi>>Stats->WMflag;Stats->W.Init(Stats->Dimension);fi>>Stats->W;Stats->M.Init(Stats->Dimension);fi>>Stats->M;fi>>Stats->PageSize;Stats->MemSize/=Stats->PageSize;Stats->BufferSize/=Stats->PageSize;Stats->QueueSize/=Stats->PageSize;Stats->OutlierTreeSize/=Stats->PageSize;fi>>Stats->BDtype;fi>>Stats->Ftype;fi>>Stats->Phase1Scheme;fi>>Stats->RebuiltAlg;fi>>Stats->StayTimes;fi>>Stats->NoiseRate;fi>>Stats->Range;fi>>Stats->CFDistr;fi>>Stats->H;Stats->Bars=new int[Stats->Dimension];for (int i=0;i<Stats->Dimension;i++) fi>>Stats->Bars[i];fi>>Stats->K;fi>>Stats->InitFt;fi>>Stats->Ft;fi>>Stats->Gtype;fi>>Stats->GDtype;fi>>Stats->Qtype;fi>>Stats->RefineAlg;fi>>Stats->NoiseFlag;fi>>Stats->MaxRPass;Stats->Ranges.Init(Stats->Dimension);if (Stats->BufferSize>0) Stats->SplitBuffer=new BufferClass(Stats);if (Stats->QueueSize>0) Stats->OutlierQueue=new RecyQueueClass(Stats);if (Stats->OutlierTreeSize>0) { Stats->OStats=new Stat("outlier"); Stats->OStats->Inherit(Stats); }return fi;}ostream& operator<<(ostream &fo,Stat** Stats) {for (int i=0; i<Paras->ntrees; i++) fo<<Stats[i]<<endl;return fo;}ofstream& operator<<(ofstream &fo,Stat** Stats) {for (int i=0; i<Paras->ntrees; i++) fo<<Stats[i]<<endl;return fo;}ostream& operator<<(ostream &fo,Stat* Stats) {fo<<"***************Status of "<<Stats->name<<endl;if (strcmp(Stats->name,"outlier")!=0) {fo<<"WMflag\t"<<Stats->WMflag<<endl;fo<<"W\t"<<Stats->W<<endl;fo<<"M\t"<<Stats->M<<endl;}fo<<"Dimension\t"<<Stats->Dimension<<endl;fo<<"PageSize\t"<<Stats->PageSize<<endl;fo<<"MemSize\t"<<Stats->MemSize<<endl;fo<<"BufferSize\t"<<Stats->BufferSize<<endl;fo<<"QueueSize\t"<<Stats->QueueSize<<endl;fo<<"OutlierTreeSize\t"<<Stats->OutlierTreeSize<<endl;fo<<"BDtype\t"<<Stats->BDtype<<endl;fo<<"Ftype\t"<<Stats->Ftype<<endl;fo<<"Phase1Scheme\t"<<Stats->Phase1Scheme<<endl;fo<<"RebuiltAlg\t"<<Stats->RebuiltAlg<<endl;fo<<"StayTimes\t"<<Stats->StayTimes<<endl;fo<<"NoiseRate\t"<<Stats->NoiseRate<<endl;fo<<"Range\t"<<Stats->Range<<endl;fo<<"CFDistr\t"<<Stats->CFDistr<<endl;fo<<"H\t"<<Stats->H<<endl;if (Stats->Bars!=NULL) { fo<<"Bars\t";
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -