亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mohuzishiyingkongzhi.txt

?? 模型自適應模糊控制源代碼
?? TXT
?? 第 1 頁 / 共 2 頁
字號:
clear		% Clear all variables in memory
eold=0; 	% Intial condition used to calculate c
rold=0; 	% Intial condition used to calculate r
yeold=0; 	% Intial condition used to calculate yc
ymold=0; 	% Initial condition for the first order reference model

% Next, initialize parameters for the fuzzy controller

nume=11; 	% Number of input membership functions for the e
			% universe of discourse
numc=11; 	% Number of input membership functions for the c
			% universe of discourse

ge=1/2;,gc=1/2;,gu=5;
		% Scaling gains for tuning membership functions for
		% universes of discourse for e, c and u respectively
		% These are tuned to improve the performance of the FMRLC
we=0.2*(1/ge);
	% we is half the width of the triangular input membership
	% function bases (note that if you change ge, the base width
	% will correspondingly change so that we always end
	% up with uniformly distributed input membership functions)
	% Note that if you change nume you will need to adjust the
	% "0.2" factor if you want membership functions that
	% overlap in the same way.
wc=0.2*(1/gc);
	% Similar to we but for the c universe of discourse
base=0.4*gu;
	% Base width of output membership fuctions of the fuzzy
	% controller

% Place centers of membership functions of the fuzzy controller:

%  Centers of input membership functions for the e universe of
% discourse for  of fuzzy controller (a vector of centers)
ce=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/ge);

% Centers of input membership functions for the c universe of
% discourse for  of fuzzy controller (a vector of centers)
cc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gc);
gf=0;

fuzzyrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gu*gf;

% Next, we define some parameters for the fuzzy inverse model

gye=1/2;,gyc=1/2;
	% Scaling gains for the error and change in error for
	% the inverse model
	% These are tuned to improve the performance of the FMRLC
gp=0.2;

numye=11; 	% Number of input membership functions for the ye
			% universe of discourse
numyc=11; 	% Number of input membership functions for the yc
			% universe of discourse

wye=0.2*(1/gye);	% Sets the width of the membership functions for
					% ye from center to extremes
wyc=0.2*(1/gyc);	% Sets the width of the membership functions for
					% yc from center to extremes
invbase=0.4*gp; % Sets the base of the output membership functions
				% for the inverse model

% Place centers of inverse model membership functions
% For error input for learning Mechanism
cye=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gye);

% For change in error input for learning mechanism
cyc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gyc);

% The next matrix contains the rule-base matrix for the fuzzy
% inverse model.  Notice that for simplicity we choose it to have
% the same structure as the rule-base for the fuzzy controller.
% While this will work for the control of the simple first order
% linear system for many nonlinear systems a different structure
% will be needed for the rule-base.  Again, the entries are
% the centers of the output membership functions, but now for
% the fuzzy inverse model.

inverrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gp;

% Next, we set up some parameters/variables for the
% knowledge-base modifier

d=1;
% This sets the number of steps the knowledge-base modifier looks
% back in time. For this program it must be an integer
% less than or equal to 10 (but this is easy to make larger)

% The next four vectors are used to store the information about
% which rules were on 1 step in the past, 2 steps in the past, ....,
% 10 steps in the past (so that picking 0<= d <= 10 can be used).

meme_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_int
meme_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_count
memc_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_int
memc_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_count

%
%  Next, we intialize the simulation of the closed-loop system.
%

k_p=1;	  % The numerator of the plant.  Change this value to study
		  % the ability of the FMRLC to control other plants.  Also,
		  % you can make this a time-varying parameter.
zeta_p=.707;
       % Damping ratio for the second order plant (could change this
	   % to see how the system will adapt to it)
w_p=1; % Undamped natural frequency for the plant (could change this
	   % to see how the system will adapt to it)
k_r=1;
 % The numerator of the reference model.  Change this value to study
 % the ability of the FMRLC to meet other performance specifications.
a_r=1;
    % The value of -a_r is the pole position for the reference model.
	% Change this value to study the ability of the FMRLC to meet
	% other performance specifications (e.g., a faster response).

t=0; 		% Reset time to zero
index=1;	% This is time's index (not time, its index).
tstop=64;	% Stopping time for the simulation (in seconds)
step=0.01;  % Integration step size
x=[0;0];	% Intial condition on state	of the plant

% Need a state space representation for the plant.  Since our
% plant is linear we use the standard form of xdot=Ax+Bu, y=Cx+Du
% Matrix A of state space representation of plant

A=[0 1;
   -w_p^2 -2*zeta_p*w_p];
B=[0; 1];	    % Matrix B of state space representation of plant
C=[k_p 0];	    % Matrix C of state space representation of plant


%
% Next, we start the simulation of the system.  This is the main
% loop for the simulation of the FMRLC.
%
while t <= tstop
	y(index)=C*x;     % Output of the plant

% Next, we define the reference input r as a sine wave

r(index)=sin(.6*t);



ym(index)=(1/(2+a_r*step))*((2-a_r*step)*ymold+...
                                    k_r*step*(r(index)+rold));

ymold=ym(index);
rold=r(index);
	% This saves the past value of the ym (r) so that we can use it
	% the next time around the loop

% Now that we have simulated the next step for the plant and reference
% model we will focus on the two fuzzy components.

% First, for the given fuzzy controller inputs we determine
% the extent at which the error membership functions
% of the fuzzy controller are on (this is the fuzzification part).

c_count=0;,e_count=0;   % These are used to count the number of
						% non-zero mf certainities
of e and c
e=r(index)-y(index);
			% Calculates the error input for the fuzzy controller
c=(e-eold)/step;
	% Calculates the change in error input for the fuzzy controller
eold=e;
% Saves the past value of e for use in the next time through the
% loop

% The following if-then structure fills the vector mfe
% with the certainty of each membership fucntion of e for the
% current input e

	if e<=ce(1)		% Takes care of saturation of the left-most
					% membership function
         mfe=[1 0 0 0 0 0 0 0 0 0 0]; % i.e., the only one on is the
         							  %left-most one
	 e_count=e_count+1;,e_int=1; 	  %  One mf on, it is the
	 								  %left-most one.
	elseif e>=ce(nume)				  % Takes care ofsaturation
									  %of the right-most mf
	 mfe=[0 0 0 0 0 0 0 0 0 0 1];
	 e_count=e_count+1;,e_int=nume; % One mf on, it is the
	 								%right-most one
	else      % In this case the input is on the middle part of the
			  % universe of discourse for e
			  % Next, we are going to cycle through the mfs to
			  % find all that are on
	   for i=1:nume
		 if e<=ce(i)
		  mfe(i)=max([0 1+(e-ce(i))/we]);
		  				% In this case the input isto the
		  				% left of the center ce(i)and we compute
						% the value of the mfcentered at ce(i)
						% for this input e
			if mfe(i)~=0
				% If the certainty is not equal to zerothen say
				% that have one mf on by incrementing our count
			 e_count=e_count+1;
			 e_int=i;	% This term holds the index last entry
			 			% with a non-zero term
			end
		 else
		  mfe(i)=max([0,1+(ce(i)-e)/we]);
		  						% In thiscase the input is to the
		  						% right ofthe center ce(i)
			if mfe(i)~=0
			 e_count=e_count+1;
			 e_int=i;  % This term holds the index of the

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人激情自拍| 久久成人精品无人区| 国产精品久久毛片av大全日韩| 欧美一区午夜精品| 26uuu国产电影一区二区| 日韩一本二本av| 国产欧美日韩在线看| 久久九九99视频| 一区二区三区欧美日韩| 精久久久久久久久久久| 色综合久久久久久久久| 精品国产123| 亚洲欧美日韩一区| 丁香天五香天堂综合| 欧美日韩国产大片| 国产人成一区二区三区影院| 亚洲综合区在线| 成人国产在线观看| 久久新电视剧免费观看| 舔着乳尖日韩一区| www.爱久久.com| 欧美激情一区在线观看| 日本不卡的三区四区五区| av男人天堂一区| 国产精品久久久久一区二区三区 | 国产成人精品一区二区三区四区| 91在线小视频| 久久亚洲综合色一区二区三区 | 亚洲精品中文在线观看| 久久66热re国产| 欧美自拍偷拍一区| 亚洲素人一区二区| 国产精品99久久久久久似苏梦涵| 欧美日韩一区二区在线观看视频| 欧美一二三区在线| 亚洲影视在线播放| 97精品国产97久久久久久久久久久久 | 国产欧美日韩精品在线| 九九视频精品免费| 91精品久久久久久蜜臀| 亚洲午夜激情网站| 欧美日韩视频一区二区| 亚洲综合免费观看高清在线观看| 成年人国产精品| 一区二区在线观看视频| 色婷婷激情久久| 亚洲成人av免费| 日韩精品在线看片z| 麻豆精品视频在线观看视频| 在线不卡欧美精品一区二区三区| 久久综合色之久久综合| 成人高清伦理免费影院在线观看| 国产欧美综合在线观看第十页| 秋霞影院一区二区| 中文字幕一区二区三区蜜月| 欧美色老头old∨ideo| 日韩电影免费在线观看网站| 精品国精品国产| 欧美性猛片aaaaaaa做受| 日韩精品一二三区| 中文字幕在线一区免费| www.成人网.com| 天天操天天色综合| 亚洲国产激情av| 亚洲精品美腿丝袜| 中文字幕乱码一区二区免费| 国产精品免费免费| 成人av先锋影音| 日韩中文字幕一区二区三区| 久久女同性恋中文字幕| 波多野结衣的一区二区三区| 成人欧美一区二区三区| 精品国产青草久久久久福利| 色婷婷av一区二区三区gif | 6080日韩午夜伦伦午夜伦| 99精品久久99久久久久| av亚洲精华国产精华| 91麻豆精品在线观看| 欧洲另类一二三四区| 欧美精品一区二区在线观看| 成人av在线看| 日韩一区二区电影在线| 国产精品理论片在线观看| 亚洲免费观看在线视频| 亚洲一区二区三区免费视频| 亚洲成av人片一区二区梦乃| 亚洲线精品一区二区三区| 国产色一区二区| 亚洲日本在线视频观看| 国产伦理精品不卡| 91在线观看视频| 制服.丝袜.亚洲.另类.中文| 日韩视频永久免费| 亚洲免费伊人电影| 奇米精品一区二区三区四区 | 国产香蕉久久精品综合网| 亚洲欧美综合色| 久久精品国产亚洲高清剧情介绍| 99久免费精品视频在线观看| 欧美一区二区三区视频免费| 国产精品视频在线看| 美日韩一区二区三区| 91久久精品网| 国产精品久久久久久久久免费桃花| 中文字幕精品综合| 日韩黄色在线观看| 欧美一区二区三区色| 亚洲在线免费播放| 91蜜桃视频在线| 亚洲品质自拍视频| 亚洲一区二区精品3399| 国产aⅴ综合色| 国产精品久久久久久久久免费桃花| 蜜芽一区二区三区| 欧美mv和日韩mv国产网站| 日本伊人色综合网| 欧美日韩精品免费观看视频| 日本不卡一二三| 久久综合狠狠综合| 99亚偷拍自图区亚洲| 亚洲精品免费在线播放| 国产精品996| 国产精品久久久久久久岛一牛影视| 高清国产一区二区三区| 国产精品久久久久一区二区三区共| 成人福利在线看| 午夜在线成人av| 久久―日本道色综合久久| 天天综合天天做天天综合| 不卡一卡二卡三乱码免费网站| av成人老司机| 美女在线观看视频一区二区| 亚洲国产一区二区三区| 国产精品久久久久久久久图文区 | 久久成人免费网站| 日韩精品一区二区三区蜜臀 | 欧美一级在线观看| 国产剧情一区在线| 亚洲欧美欧美一区二区三区| 日韩精品一区二区三区中文不卡 | 亚洲精品免费一二三区| 精品成a人在线观看| 国产午夜亚洲精品羞羞网站| 欧美在线啊v一区| 狠狠色狠狠色综合系列| 亚洲成人综合视频| 亚洲精品欧美激情| 亚洲精品自拍动漫在线| 国产午夜亚洲精品羞羞网站| 欧美人xxxx| 91国偷自产一区二区使用方法| 国内外精品视频| 亚洲一区二区黄色| 精品亚洲国产成人av制服丝袜| 日本三级亚洲精品| 香蕉乱码成人久久天堂爱免费| 亚洲精品国产a| 五月婷婷激情综合| 亚洲美女一区二区三区| 亚洲日穴在线视频| 夜夜精品浪潮av一区二区三区| 欧美精品第1页| 日韩美女主播在线视频一区二区三区 | 麻豆国产91在线播放| 午夜视频在线观看一区二区| 日本不卡一二三区黄网| 国产精品综合在线视频| 香蕉成人啪国产精品视频综合网| 久久久不卡网国产精品一区| 国产精品美女久久久久aⅴ| 国产精品久久久99| 日本不卡一区二区| 成人深夜在线观看| 色婷婷综合久色| 91搞黄在线观看| 久久亚洲欧美国产精品乐播| 国产精品久久久久一区 | 99久久精品国产毛片| 制服丝袜日韩国产| 中文字幕在线不卡国产视频| 亚洲精品伦理在线| av电影一区二区| 在线观看成人免费视频| 久久精品亚洲一区二区三区浴池| 亚洲高清在线视频| 在线免费av一区| 国产精品网站在线| 国内成人自拍视频| 成人免费毛片高清视频| 色综合天天做天天爱| 精品久久久久久无| 午夜久久久影院| 在线免费观看视频一区| 欧美大黄免费观看| 日韩黄色一级片| 日韩一卡二卡三卡国产欧美| 亚洲欧美另类小说视频| 99re6这里只有精品视频在线观看| 日本一区二区免费在线| 国产在线视视频有精品|