?? one_rbfdemo.m
字號:
echo off
% RBFDEMO demonstration for using nonlinear SVM classifier
% with a RBF kernel.
echo on;
clc
% RBFDEMO demonstration for using nonlinear SVM classifier
% with a RBF kernel.
%##########################################################################
%
% This is a demonstration script-file for contructing and
% testing a nonlinear SVM-based classifier
% (with a RBF kernel) using OSU SVM CLASSIFIER TOOLBOX.
% Note that the form of the RBF kernel is
% exp(-Gamma*|X(:,i)-X(:,j)|^2)
%
%##########################################################################
pause % Strike any key to continue (Note: use Ctrl-C to abort)
clc
%##########################################################################
%
% Load the training data and examine the dimensionity of the data
%
%##########################################################################
pause % Strike any key to continue
% load the training data
clear all
load DemoData_train
Samples=Samples(:,find(Labels==1));
Labels = ones(1,size(Samples,2));
pause % Strike any key to continue
% take a look at the data, and please pay attention to the dimensions
% of the input data
who
size(Labels)
size(Samples)
pause % Strike any key to continue
clc
%##########################################################################
%
% Construct a nonlinear SVM classifier (with RBF kernel)
% using the training data
% Note that the form of the RBF kernel is
% exp(-Gamma*|X(:,i)-X(:,j)|^2)
%
%##########################################################################
pause % Strike any key to continue
% set the value of Gamma and u if you don't want use its default value,
Gamma = 2;
u=0.3;
% By using this format, the default values of Epsilon, CacheSize
% are used. That is, Epsilon=0.001, and CacheSize=45MB
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] =one_RbfSVC(Samples, Gamma,u);
% End of the SVM classifier construction
%
% The resultant SVM classifier is jointly determined by
% "AlphaY", "SVs", "Bias", "Parameters", and "Ns".
%
pause % Strike any key to continue
% Save the constructed nonlinear SVM classifier
save SVMClassifier AlphaY SVs Bias Parameters nSV nLabel;
pause % Strike any key to continue
clc
%##########################################################################
%
% Test the constructed nonlinear SVM Classifier
%
%##########################################################################
pause % Strike any key to continue
% Load the constructed nonlinear SVM classifier
clear all
load SVMClassifier
pause % Strike any key to continue
% have a look at the variables determining the SVM classifier
who
pause % Strike any key to continue
% load test data
load DemoData_test
Samples=Samples(:,find(Labels==1));
Labels = ones(1,size(Samples,2));
pause % Strike any key to continue
% Test the constructed SVM classifier using the test data
% begin testing ...
[nonOutlierRate, scores]= SVMTest(Samples, Labels, AlphaY, SVs, Bias,Parameters, nSV, nLabel);
% end of the testing
pause % Strike any key to continue
% Percentage of Outliers in the whole class
% Theoretical Value:
u=0.3
% Experimental Result:
1-nonOutlierRate
pause % Strike any key to continue
echo off
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -