?? ac.tex
字號(hào):
\documentstyle{amsppt}
\magnification=1200
\TagsOnRight
\NoBlackBoxes
\hsize=30pc
\vsize=42pc
\NoRunningHeads
\topmatter
\title
Weighted Weak Type $(H^1, L^1)$ Estimates for Commutators of
Littlewood-Paley Operators
\endtitle
\affil
Liu Lanzhe \\
College of Mathematics \\
Changsha University of Science and Technology \\
Changsha 410077, P.R. of China \\
E-mail:lanzheliu$\@$263.net
\endaffil
\rightheadtext{}
\endtopmatter
\document
{\bf Abstract} \ \ We show the weighted weak type
$(H^1, L^1)$ estimates for the commutator of
Littlewood-Paley operators.
\vskip2mm
\par\noindent
{\bf Key words:} \ \ Littlewood-Paley operator, Commutator, BMO($R^n$), $A_1$ weight.
\vskip2mm
\par\noindent
{\bf 2000 MR Subject Classification} \ \ 42B25, 42B20.
\vskip5mm
\par\noindent
{\bf 1. Introduction}
\par
Let $\varepsilon>0$, fixed a given function
$\psi$ satisfy the following properties:
\par
(1) \ \ $\int \psi (x)dx=0$,
\par
(2) \ \ $|\psi (x)|\le C(1+|x|)^{-(n+\varepsilon)}$,
\par
(3) \ \ $|\psi(x+y)-\psi(x)|\le C|y|^\varepsilon(1+|x|)
^{-(n+1+\varepsilon)}$ when $2|y|<|x|$.
\par
Let $b$ be a locally integrable function and $\Gamma(x)=
\{(y,t)\in R_+^{n+1}: |x-y|<t\}$. The commutators of
Littlewood-Paley operator are defined by
$$
\align
\;& g_{\psi,b}(f)(x)=\left(\int_0^\infty |F_{b,t}(x)|^2
\frac{dt}{t}\right)^{1/2}, \\
\;& S_{\psi, b}(f)(x)=\left(\int_{\Gamma(x)} |F_{b,t}(x,y)|^2 \frac{dydt}
{t^{1+n}} \right)^{1/2}, \\
\;& g_{\mu,b}^\ast(f)(x)=\left[\int\int_{R_+^{n+1}}
\left(\frac{t}{t+|x-y|}\right)^{n\mu}
|F_{b,t}(x,y)|^2 \frac{dydt}{t^{1+n}} \right]^{1/2}, \ \ \ \ \mu>1,
\endalign
$$
where
$$
F_{b,t}(x)=\int_{R^n}\psi_t(x-y)f(y)(b(x)-b(y))dy,
$$
$$
F_{b,t}(x,y)=\int_{R^n}\psi_t(y-z)f(z)(b(x)-b(z))dz,
$$
and $\psi_t(x)=t^{-n}\psi(x/t)$ for $t>0$. We denote $F_t(f)(x)=f\ast\psi_t(x)$.
We also define
$$
\align \;& g_\psi(f)(x)=\left(\int_0^\infty |f\ast\psi_t(x)|^2
\frac{dt}{t}\right)^{1/2}, \\
\;& S_\psi(f)(x)=\left(\int_{\Gamma(x)} |f\ast \psi_t(y)|^2
\frac{dydt}{t^{1+n}} \right)^{1/2}, \\
\;& g_\mu^\ast(f)(x)=\left[\int\int_{R_+^{n+1}}\left(
\frac{t}{t+|x-y|}\right)^{n\mu} |f\ast \psi_t(y)|^2
\frac{dydt}{t^{1+n}}\right]^{1/2},
\endalign
$$
which are Littlewood-Paley operator (see [7]). It
is well known that these operators play important role
in harmonic analysis (see [6]). In 1976, a classical result of
Coifman, Rochberg and Weiss [3]
proved that the commutator $[b, T]$ generated by BMO($R^n$)
functions and the Calderon-
Zygmund operator is bounded on $L^p (R^n)$ ($1<p<\infty$).
However, it was observed that $[b, T]$ is not bounded, in general,
from $H^p(R^n)$ to $L^p(R^n)$ and from $L^1(R^n)$ to $L^{1,\infty}$
$(R^n)$ for $p\le 1$.
The main purpose of this paper is to establish the
weighted boundedness of the commutators related to Littlewood-Paley
operator and $BMO(R^n)$ functions from $H^1$ space
to weak $L^1$ space. Our result can be stated as follows.
\par
{\bf Theorem.} \ \ Let $b\in BMO(R^n)$ and $w\in A_1$. Then the
commutators $g_{\psi,b}$, $S_{\psi, b}$ and $g_{\mu,b}^\ast$ are
all bounded from $H_w^1(R^n)$ to $L_w^{1,\infty}(R^n)$, i.e.,
there exist constants $C$ such that for any
$f\in H_w^1(R^n)$ and $\lambda>0$,
$$
w(\{x\in R^n: g_{\psi,b}(f)(x)>\lambda\})\le C\lambda^{-1}
||b||_{BMO}||f||_{H_w^1(R^n)},
$$
$$
w(\{x\in R^n: S_{\psi,b}(f)(x)>\lambda\})\le C\lambda^{-1}
||b||_{BMO}||f||_{H_w^1(R^n)},
$$
$$
w(\{x\in R^n: g_\mu^\ast(f)(x)>\lambda\})\le C\lambda^{-1}
||b||_{BMO}||f||_{H_w^1(R^n)}. \ \
$$
\vskip5mm
\par\noindent
{\bf 2. Proof of Theorem}
\par
Given $f\in H_w^1(R^n)$, by the atomic decomposition of
$H_w^1(R^n)$ and a limiting argument, it suffices to prove the theorem for
a finite sum for the atomic decomposition of $f=\sum\limits_Q
\lambda_Q a_Q$ with supp$a_Q\subset Q$, $Q=Q(x_0,r)$ is the cube
with center $x_0$ and side-length $r$, and
$||a_Q||_\infty\le w(Q)^{-1}$, $\int a_Q(x)dx=0$,
$\sum\limits_Q |\lambda_Q|\le C||f||_{H_w^1(R^n)}$. We
may assume that each $Q$ is dyadic. For $\lambda>0$, by
Lemma 4.1 of [3], there exists a collection of pairwise disjoint
dyadic cubes $\{S\}$ such that
$$
\sum_{Q\subset S}|\lambda_Q|\le C\lambda |S|, \ \ \text{for all} \ S,
$$
$$
\sum_S|S|\le C\lambda^{-1}\sum_Q|\lambda Q|,
$$
$$
\left|\left|\sum_{Q\not\subset any S}\lambda_Q |Q|^{-1}
\chi_Q\right|\right|_\infty\le C\lambda.
$$
Let $E=\bigcup\limits_S\overline S$, where, and in what follows,
for a fixed cube $B$, $\overline B$ denotes the cube with the same
center as $B$ but with the side-length $4\sqrt{n}$ times that
of $B$. Then
$$
|E|\le C\lambda^{-1}||f||_{H_w^1(R^n)}.
$$
Set $M(x)=\sum\limits_S\sum\limits_{Q\subset S}\lambda_Q a_Q$,
$N(x)=f(x)-M(x)$. By the $L^2$-boundedness of $g_{\psi, b}$,
$S_{\psi, b}$ and $g_{\mu, b}^\ast$ (see [2]) and well-known
arguments, it suffices to show that
$$
\dot w(\{x\in E^c: T_b(M)(x)>\lambda\})\le C\lambda^{-1}
||f||_{H_w^1(R^n)},
$$
where $T_b=g_{\psi, b}$ or $S_{\psi, b}$ or $g_{\mu,b}^\ast$.
\par
For $g_{\psi, b}$ notice that $g_{\psi, b}(M)(x)\le \sum\limits_S
\sum\limits_{Q\subset S}|\lambda_Q|g_{\psi, b}(a_Q)(x)$, by the
vanishing condition of $a_Q$, and notice that
$$
\int_0^\infty \frac{tdt}{(t+|x-x_0|)^{2(n+1+\varepsilon)}}=C
|x-x_0|^{-2(n+\varepsilon)}.
$$
We have, for $x\in (2Q)^C$,
$$
\align
g_{\psi, b}(a_Q)(x)
\;& \left[\int_0^\infty\left(\int_Q|\psi_t(x-y)-\psi_t(x-x_0)|
|a_Q(y)| \ |b(x)-b(y)|dy\right)^2\frac{dt}{t}\right]^{1/2} \\
\le& C\left[\int_0^\infty\left(\int_Q t^{-n}|a_Q(y)| |b(x)-b(y)|
\frac{(|y-x_0|/t)^\varepsilon}{(1+|x-x_0|/t)^{n+1+\varepsilon}}
dy\right)^2\frac{dt}{t}\right]^{1/2} \\
=& C\left(\int_0^\infty\frac{tdt}{(t+|x-x_0|^{2(n+1+\varepsilon)})}
\right)^{1/2}\left(\int_Q |y-x_0|^\varepsilon |a_Q(y)|
|b(x)-b(y)|dy\right), \\
\le& C|x-x_0|^{-(n+\varepsilon)}|Q|^{\varepsilon/n}w(Q)^{-1}
\int_Q|b(x)-b(y)|dy. \\
\endalign
$$
For $S_{\psi, b}$, we deduce that
$$
\align
\;& S_{\psi,b}(a_Q)(x) \\
\le& \left[\int_{\Gamma(x)} \left(\int_Q |\psi_t(y-z)-\psi_t(y-x_0)| \
|a_Q(z)| \ |b(x)-b(z)|dz \right)^2
\frac{dydt}{t^{1+n}}\right]^{1/2} \\
\le& C\left[\int_{\Gamma(x)} \left(\int_Q t^{-n}|a_Q(z)| |b(x)-b(z)|
\frac{(|x_0-z|/t)^\varepsilon}{(1+|x_0-y|/t)^{n+1+\varepsilon}}
dy\right)^2\frac{dydt}{t^{1+n}}\right]^{1/2} \\
=& C\left[\int_{\Gamma(x)}\left(\int_Q\frac{|B|^{\varepsilon/n}
w(Q)^{-1}t}{(t+|x_0-y|)^{n+1+\varepsilon}}|b(x)-b(z)|dz\right)^2
\frac{dydt}{t^{1+n}}\right]^{1/2} \\
\le& C|Q|^{\varepsilon/n}w(Q)^{-1}\left[\int_{\Gamma(x)}\frac{t^{1-n}
2^{2(n+1+\varepsilon)}}{(2t+2|x_0-y|)^{2(n+1+\varepsilon)}}
\left(\int_Q |b(x)-b(z)|dz\right)^2 dydt\right]^{1/2}, \\
\le& C|Q|^{\varepsilon/n} w(Q)^{-1}\left(\int_{\Gamma(x)}
\frac{t^{1-n}dydt}{(t+|x-x_0|^{2(n+1+\varepsilon)})}\right)
^{1/2}\left(\int_Q |b(x)-b(z)|dz\right) \\
\le& C|Q|^{\varepsilon/n}w(Q)^{-1}\left(\int_0^\infty
\frac{tdt}{(t+|x-x_0|)^{2(n+1+\varepsilon)}}\right)^{1/2}
\left(\int_Q |b(x)-b(z)|dz\right) \\
\le& C|x-x_0|^{-(n+\varepsilon)}|Q|^{\varepsilon/n}w(Q)^{-1}
\int_Q|b(x)-b(y)|dy.
\endalign
$$
For $g_{\mu, b}^\ast$, notice that,
$$
\align
\;& t^{-n}\int_{R^n}\left(\frac{t}{t+|x-y|}\right)^{n\mu}
\frac{dy}{(t+|x_0-y|)^{2(n+1+\varepsilon)}}\le CM
\left(\frac{1}{(t+|x_0-x|)^{2(n+1+\varepsilon)}}\right) \\
\le& C\left(\frac{1}{(t+|x_0-x|)^{2(n+1+\varepsilon)}}\right).
\endalign
$$
We deduce that
$$
\align
\;& g_{\mu,b}^\ast(a_Q)(x)\le\biggl[\int\int_{R_+^{n+1}} \\
\;& \left(\frac{t}{t+|x-y|}\right)^{n\mu}\biggl(\int_Q|\psi_t(y-z)
-\psi_t(y-x_0)||a_Q(z)||b(x)-b(z)|dz\biggr)^2
\frac{dydt}{t^{1+n}}\biggr]^{1/2} \\
\le& C\biggl[\int\int_{R_+^{n+1}}\left(\frac{t}{t+|x-y|}\right)^{n\mu} \\
\;& \left(\int_Q t^{-n}|a_Q(z)||b(x)-b(z)|
\frac{(|x_0-z|/t)^\varepsilon}
{(1+|x_0-y|/t)^{n+1+\varepsilon}}dz\right)^2\frac{dydt}{t^{1+n}}
\biggr]^{1/2} \\
\endalign
$$
$$
\align
\le& C|Q|^{\varepsilon/n}w(Q)^{-1}\biggl[\int\int_{R_+^{n+1}}\left(
\frac{t}{t+|x-y|}\right)^{n\mu}\frac{t^2}{(t+|x_0-y|)^{2(n+1+
\varepsilon)}} \\
\;& \left(\int_Q |b(x)-b(z)|dz\right)^2
\frac{dydt}{t^{1+n}}\biggr]^{1/2} \\
\le& C|x-x_0|^{-(n+\varepsilon)}|Q|^{\varepsilon/n}w(Q)^{-1}
\int_Q |b(x)-b(y)|dy.
\endalign
$$
Thus, with $b_0=|Q|^{-1}\int_Q b(x)dx$,
$$
\align
\;& w(\{x\in E^C: T_b(M)(x)>\lambda\})\le
C\lambda^{-1}\int_{E^C} T_b(M)(x)w(x)dx \\
\le& C\lambda^{-1}\sum_{S}\sum_{Q\subset S}|\lambda_Q|
\sum_{k=1}^\infty \int_{2^{k+1}\overline Q\setminus 2^k
\overline Q}T_b(a_Q)(x)w(x)dx \\
\le& C\lambda^{-1}\sum_S\sum_{Q\subset S}|\lambda_Q||Q|^{\varepsilon/n}
w(Q)^{-1}\sum_{k=1}^\infty\int_{2^{k+1}\overline Q\setminus 2^k
\overline Q}|x-x_0|^{-(n+\varepsilon)} \\
\;& \left(\int_Q |b(x)-b(y)|dy\right)w(x)dx \\
\le& C\lambda^{-1}\sum_S\sum_{Q\subset S}|\lambda_Q||Q|^{\varepsilon/n}
w(Q)^{-1}\sum_{k=1}^\infty\int_{2^{k+1}\overline Q\setminus 2^k
\overline Q}|x-x_0|^{-(n+\varepsilon)} \\
\;& |Q|(|b(x)-b_0|+||b||_{BMO})w(x)dx \\
\le& C\lambda^{-1}\sum_S\sum_{Q\subset S}|\lambda_Q||Q|^{\varepsilon/n+1}
w(Q)^{-1}\sum_{k=1}^\infty |2^k Q|^{-(1+\varepsilon/n)}
\int_{2^{k+1}\overline Q} |b(x)-b_0|w(x)dx \\
\;& +C\lambda^{-1}\sum_S\sum_{Q\subset S}|\lambda_Q||Q|^{\varepsilon/n+1}
w(Q)^{-1}\sum_{k=1}^\infty |2^k Q|^{-(1+\varepsilon/n)} ||b||_{BMO}
w(2^k Q) \\
=& I_1+I_2.
\endalign
$$
For $I_1$, taking $p>1$ and $1/p+1/p'=1$, using the properties of
$BMO(R^n)$ function (see [6]), and noting $w\in A_1$, we get
$\frac{w(B_2)}{|B_2|}\frac{|B_1|}{w(B_1)}\le C$ for all cubes
$B_1, B_2$ with $B_1\subset B_2$. Thus, by Holder and reverse
Holder inequality, we obtain
$$
\align
I_1
\le& C\lambda^{-1}\sum_S\sum_{Q\subset S}|\lambda_Q|
\sum_{k=1}^\infty 2^{-k\varepsilon} |Q|w(Q)^{-1}
\left(\frac{1}{|2^{k+1}\overline Q|}\int_{2^{k+1}\overline Q}
|b(x)-b_0|^p dx\right)^{1/p} \\
\;& \left(\frac{1}{|2^{k+1}\overline Q|}
\int_{2^{k+1}Q}w(x)^{p'}dx\right)^{1/p'} \\
\le& C\lambda^{-1}\sum_S\sum_{Q\subset S} |\lambda_Q|\sum_{k=1}^\infty k
2^{-k\varepsilon} ||b||_{BMO}\left(\frac{w(2^k Q)}{|2^k Q|}
\frac{|Q|}{w(Q)}\right) \\
\endalign
$$
$$
\align
\le& C\lambda^{-1}||b||_{BMO}\sum_S\sum_{Q\subset S}|\lambda_Q| \\
\le& C\lambda^{-1}||b||_{BMO}||f||_{H_w^1(R^n)}.
\endalign
$$
For $I_2$, similar to the estimate of $I_1$, we get
$I_2\le C\lambda^{-1}||b||_{BMO}$. This completes the proof of
Theorem.
\vskip5mm \head{\bf References}
\endhead
\vskip6pt
\ref\no1
\by
J.Alvarez
\paper
Continuity properties for linear commutators of Calderon-Zygmund
operators
\jour
Collect. Math.
\vol
49
\yr
1998
\pages
17-31
\endref
\ref\no2
\by
J.Alvarez, R.J.Babgy, D.S.Kurtz and C.Perez
\paper
Weighted estimates for commutators of linear operators
\jour
Studia Math.
\vol
104
\yr
1993
\pages
195-209
\endref
\ref\no3
\by
M. Christ
\paper
Weak type (1,1) bounds for rough operators
\jour
Ann. of Math.
\vol
124
\yr
1988
\pages
19-42
\endref
\ref\no4
\by
R.Coifman, R. Rochberg and G.Weiss
\paper
Factorization theorem for Hardy spaces in several variables
\jour
Ann. of Math.
\vol
103
\yr
1976
\pages
611-635
\endref
\ref\no5
\by
C.Perez
\paper
Endpoint estimates for commutators of singular integral operators
\jour
J. Func. Anal.
\vol
128
\yr
1995
\pages
163-185
\endref
\ref\no6
\by
E.M.Stein
\paper
Harmonic Analysis: real variable methods
\jour
orthogonality and oscillation integrals, Princeton Univ. Press,
Princeton, NJ
%\vol
%\yr
\pages
1993
\endref
\ref\no7
\by
A.Torchinsky
\paper
The real variable methods in harmonic analysis
\jour
Pure and Applied Math.
\vol
123, Academic Press, New York
\pages
1986
\endref
\enddocument
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -