亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? membranetx.m

?? Matlab 的Numerical Computing
?? M
字號:
function [L,lambda] = membranetx(k,m,n,np)
%MEMBRANETX  Textbook version of MEMBRANE, eigenfunctions of L-membrane.
%
%   L = MEMBRANETX(k) is the k-th eigenfunction of the L-shaped membrane.
%   [L,lambda] = MEMBRANETX(k) also returns the k-th eigenvalue.
%
%   L = MEMBRANETX(k,m,n,np) sets some mesh and accuracy parameters:
%
%     k = index of eigenfunction, default k = 1.
%     m = number of points on one edge of one square.
%         The output L is 2*m+1-by-2*m+1.  The default m = 30.
%     n = number of terms in sum, default n = min(m,20).
%     np = number of terms in partial sum, default np = n.
%     With np = n, the eigenfunction is zero on the boundary.
%     With np < n, such as np = 2, the boundary is not tied down.
%
%   L = ROT90(MEMBRANETX(1,15,9,2),-1) is the MathWorks logo.

% Default parameters

if nargin < 1, k = 1; end
if nargin < 2, m = 30; end
if nargin < 3, n = min(m,20); end
if nargin < 4, np = n; end

% Compute eigenvalue and symmetry class.
% sym = 1, symmetric about center line
% sym = 2, antisymmetric about center line
% sym >= 3, eigenvalue of the square, reflected into other squares

[lambda,sym] = membraneval(k,m,n);
if m == 1, L = lambda(k); return, end

% The null vector from the SVD of the boundary matrix gives coefficients.

[sigma,c,alfa] = membranesvd(lambda,sym,m,n);

% Evaluate the eigenfunction on a square grid.

L = membranefun(lambda,sym,c,alfa,m,n,np);

% ------------------------------

function [lambda,sym] = membraneval(k,m,n);
% MEMBRANEVAL
% [lambda,sym] = membraneval(k,m,n) is the k-th eigenvalue of
% the L shaped membrane, and its symmetry class.
% m = number of points on one edge of one square.
% n = number of terms in sum.

persistent lambdas syms

if isempty(lambdas) & exist('membrane.mat')
   % Load precomputed eigenvalues
   load membrane.mat
end

if length(lambdas) < k
   % Compute eigenvalues beyond those already computed.
   % Algorithm:
   % Use direct search to get near local minima of membranesvd(lambda).
   % Then use "fmintx" to home in on the minimizers.
   % The step size delta controls the direct search.
   % Increasing delta decreases computer time, but might miss some eigenvalues. 
   % kmax = number of eigenvalues.
   % delta = search increment.
   % tol = tolerance for fmintx
   kmax = k;
   delta = .01;
   tol = 1.e-12;
   k = length(lambdas);
   if k == 0
      lambdas(1) = fmintx(@membranesvd,9.6,9.7,tol,1,m,n);
      syms(1) = 1;
      k = 1;
      fprintf(1,'%4.0d %18.12f %4.0d\n',k,lambdas(k),syms(k))
   end
   xstart = delta*floor(lambdas(k)/delta);
   x = [0 0 xstart];
   f = zeros(3,3);

   % Look for x so that f(x) < both f(x-delta) and f(x+delta).
   while k < kmax
      x(1:2) = x(2:3);
      x(3) =  x(3) + delta;
      for s = 1:3    % Symmetry class.
         f(s,1:2) = f(s,2:3);
         f(s,3) = membranesvd(x(3),s,m,n);
         if f(s,2) < f(s,1) & f(s,2) < f(s,3);
            lam = fmintx(@membranesvd,x(1),x(3),tol,s,m,n);
            if s < 3
               mult = 1;
            else
               % Multiple eigenvalues are integer multiples of pi^2
               p = round(lam/pi^2);
               lam = p*pi^2;
               [i,j] = ndgrid(1:sqrt(p));
               mult = sum(p == i(:).^2+j(:).^2);
            end
            for mu = 1:mult
               k = k+1;
               lambdas(k,1) = lam;
               syms(k,1) = s+mu-1;
               fprintf(1,'%4.0d %18.12f %4.0d\n',k,lambdas(k),syms(k))
               pause(0)
            end
         end
      end
   end
end

[lambdas,p] = sort(lambdas);
syms = syms(p);
% save membrane lambdas syms
lambda = lambdas(k);
sym = syms(k);

% ------------------------------

function [sigma,c,alfa] = membranesvd(lambda,sym,m,n)
% MEMBRANESVD
% Evaluate fundamental solutions on boundary of L-shaped region.
% sigma = membranesvd(lambda,s,m,n) is the smallest singular value of the
% matrix obtained by evaluating n fundamental solutions with symmetry class
% s at 3*m+1 points on the boundary of the L.  If lambda is chosen to give
% a local minima of this function, the resulting null vector, c, provides
% coeffients for a linear combination over the entire region that nearly
% vanishes on the boundary.
%
% Input:
%   lambda = eigenvalue parameter, vary this to minimize the resulting sigma.
%   sym = symmetry class.
%   m = number of points on edge of one square.
%   n = number of fundamental solutions.
%
% Output:
%   sigma = smallest singular value.
%   c = null vector = coefficients.
%   alfa = 1-by-n vector of Bessel function orders for given symmetry.

% Bessel function orders.
% sym = 1, alfa = (2/3) * [1 5 7 11 13 ... ], (odd, not divisible by 3)
% sym = 2, alfa = (2/3) * [2 4 8 10 14 ... ], (even, not divisible by 3)
% sym >= 3, alfa = [2 4 6 8 10 ... ] = even integers

switch sym
   case {1,2}
      j = (sym:2:3*n);
      j(mod(j,3)==0) = [];
      alfa = (2/3)*j;
   otherwise
      alfa = 2*(1:n);
end

% Use polar coordinates to describe three-eighths of the boundary.

x = [ones(m,1); (m:-1:-m)'/m];
y = [(0:m-1)'/m; ones(2*m+1,1)];
theta = atan2(y,x);
r = sqrt(x.^2 + y.^2);

% Evaluate the fundamental solutions on the boundary.
% A is a (3*m+1)-by-n matrix.

A = besselj(alfa,sqrt(lambda)*r).*sin(theta*alfa);

% Scale to make columns comparable.

scale = diag(sparse(1./sqrt(sum(A.*A))));
A = A*scale;

% Compute SVD and obtain coefficients from null vector(s).

[U,S,V] = svd(A,0);
if sym > 3, n = n-(sym-3); end    % Multiple eigenvalue
sigma = S(n,n);
c = scale*V(:,n);

% ------------------------------

function L = membranefun(lambda,sym,c,alfa,m,n,np)
% MEMBRANEFUN  Evaluate the eigenfunction on a square grid.
% L = membranefun(lambda,sym,c,alfa,m,n,np)
% Used by MEMBRANETX.

[x,y] = meshgrid((-m:m)/m,(m:-1:0)'/m);
r = sqrt(x.*x + y.*y);
theta = atan2(y,x);
theta(m+1,m+1) = 0;
S = zeros(m+1,2*m+1);
for j = 1:np
   S = S + c(j)*besselj(alfa(j),sqrt(lambda)*r).*sin(alfa(j)*theta);
end
S = S/S(min(find(abs(S(:)) == max(abs(S(:))))));
L = zeros(2*m+1,2*m+1);
switch sym
   case 1
      L(1:m+1,:) = triu(S);
      L = L + L' - diag(diag(L));
   case 2
      L(1:m+1,:) = triu(S);
      L = L - L';
   otherwise
      L(1:m,1:m) = S(1:m,1:m);
      L(m+2:2*m+1,1:m) = -flipud(L(1:m,1:m));
      L(1:m,m+2:2*m+1) = -fliplr(L(1:m,1:m));
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一级淫片007| 一本色道久久综合亚洲精品按摩| 日日骚欧美日韩| 亚洲一区二区视频在线| 秋霞午夜av一区二区三区 | 成人黄色在线网站| 97久久超碰精品国产| 欧美视频中文一区二区三区在线观看| 成人激情黄色小说| 欧美日韩一区 二区 三区 久久精品 | 麻豆精品国产91久久久久久| 午夜久久福利影院| 国精产品一区一区三区mba桃花| 成人ar影院免费观看视频| 欧美二区乱c少妇| 亚洲视频小说图片| 成人午夜在线视频| 日韩精品最新网址| 亚洲欧美日韩国产成人精品影院 | 国产精品一品视频| 91精品国产一区二区三区香蕉| 国产欧美一区二区精品久导航| 亚洲v精品v日韩v欧美v专区 | 亚洲国产精品v| 九九九精品视频| 日韩免费电影网站| 五月天丁香久久| 欧美三级一区二区| 亚洲一区二区三区四区在线观看| 成人av影院在线| 日韩一区在线免费观看| 成人黄色777网| 中文字幕一区二区三区精华液 | 亚洲黄色录像片| 色噜噜狠狠成人中文综合| 18成人在线视频| 欧美成人女星排行榜| 欧美色手机在线观看| 亚洲综合成人在线视频| 欧美日韩精品免费观看视频| 亚洲色图在线视频| 91久久国产综合久久| 亚洲一区二区在线免费观看视频| 欧美性一二三区| 午夜不卡av在线| 欧美tk丨vk视频| 成人免费毛片app| 亚洲福利国产精品| 精品福利二区三区| 一本久久精品一区二区| 日韩成人一级片| 国产精品你懂的| 91精品在线观看入口| 国产原创一区二区| 国产精品久久久久四虎| 欧美精选午夜久久久乱码6080| 激情伊人五月天久久综合| 亚洲天堂福利av| 91麻豆精品国产91久久久久久久久| 国产一区 二区 三区一级| 亚洲午夜久久久久久久久久久| 日韩欧美国产精品| 91久久精品一区二区| 国产ts人妖一区二区| 亚洲va国产va欧美va观看| 亚洲色图第一区| 国产精品护士白丝一区av| 欧美电影在线免费观看| 欧美亚洲丝袜传媒另类| 午夜av一区二区三区| 亚洲成a人片综合在线| 国产精品久久久久久久久久久免费看| 日本一区二区三区电影| 久久久久久久综合| 欧美一级欧美三级在线观看| 91亚洲男人天堂| 91蜜桃视频在线| eeuss影院一区二区三区| 国产成人亚洲综合色影视| 精久久久久久久久久久| 青青青伊人色综合久久| 视频在线观看91| 麻豆精品在线视频| 国产成人综合在线观看| 在线视频欧美区| 欧美另类z0zxhd电影| 欧美一级夜夜爽| 欧美不卡一区二区三区| 精品国产一区二区三区久久久蜜月| 日韩欧美aaaaaa| 欧美激情一二三区| 亚洲二区在线视频| 人妖欧美一区二区| 成人黄色一级视频| 欧美亚洲国产怡红院影院| 日韩欧美亚洲国产另类| 国产精品成人一区二区艾草| 一区二区日韩电影| 久久99日本精品| 99riav一区二区三区| 3atv在线一区二区三区| 国产精品全国免费观看高清| 日本美女视频一区二区| 国产精品12区| 91精品国产入口在线| 亚洲国产精品成人综合色在线婷婷| 亚洲成人av资源| 91浏览器入口在线观看| 精品美女在线播放| 亚洲va欧美va人人爽| 成人国产精品免费网站| 精品少妇一区二区| 亚洲成人综合在线| 日本电影亚洲天堂一区| 国产人成亚洲第一网站在线播放| 亚洲一区中文日韩| 91网站在线播放| 亚洲成av人**亚洲成av**| 欧洲精品一区二区| 亚洲欧美在线另类| 91麻豆视频网站| 国产精品国产三级国产aⅴ中文| 丰满放荡岳乱妇91ww| 欧美videos中文字幕| 麻豆国产一区二区| 欧美mv和日韩mv国产网站| 久久99久久久久久久久久久| 欧美一区二区福利视频| av在线不卡免费看| 久久亚洲捆绑美女| 成人午夜看片网址| 自拍偷拍亚洲欧美日韩| 91网页版在线| 日韩不卡一区二区三区| 久久久夜色精品亚洲| 99国产精品国产精品毛片| 亚洲国产一区二区视频| 欧美成人伊人久久综合网| 丰满亚洲少妇av| 亚洲成人免费在线观看| 欧美xfplay| 在线免费观看不卡av| 久久99九九99精品| 亚洲欧美一区二区不卡| 欧美精品v日韩精品v韩国精品v| 麻豆国产欧美日韩综合精品二区| 久久人人超碰精品| 在线成人av网站| 波多野结衣欧美| 精品一区二区在线视频| 一区二区三区在线观看视频 | 国产精品婷婷午夜在线观看| 欧美日韩精品电影| 色婷婷综合久久久久中文一区二区| 免费的国产精品| 午夜影院久久久| 一区二区三区**美女毛片| 国产欧美日韩视频一区二区| 欧美日韩亚洲另类| 色综合天天天天做夜夜夜夜做| 精品亚洲免费视频| 亚洲第一主播视频| 亚洲人一二三区| 18成人在线观看| 日韩美女久久久| 国产日产欧美精品一区二区三区| 亚洲猫色日本管| 中文天堂在线一区| 国产色婷婷亚洲99精品小说| 日韩欧美在线观看一区二区三区| 欧美午夜精品久久久久久孕妇 | 久久免费电影网| 久久久精品免费网站| 久久久久久综合| 精品国产乱码久久久久久蜜臀| 4hu四虎永久在线影院成人| 欧美日韩亚洲综合在线| 欧美色综合网站| 日韩天堂在线观看| 久久蜜桃一区二区| 国产精品久久久一区麻豆最新章节| 中文字幕中文字幕一区二区| 亚洲国产成人在线| 亚洲国产精品一区二区久久 | 精品人在线二区三区| 日韩欧美精品三级| 亚洲色图在线看| 久久精品国产第一区二区三区| 国产毛片精品视频| 欧美日韩精品欧美日韩精品一综合| 8v天堂国产在线一区二区| 久久久91精品国产一区二区三区| 欧美激情一区二区在线| 亚洲一区视频在线观看视频| 精品亚洲国产成人av制服丝袜 | 亚洲六月丁香色婷婷综合久久 | 欧美成人一级视频| 国产一区二区三区| av一区二区三区四区| 欧美人与禽zozo性伦|