?? invinit2.m
字號:
% ------------------------------> INVINIT2.M <------------------------------
% Initialization file for the program "special2"
% ---------- Switches -----------
simul = 'simulink'; % System specification (simulink/matlab/nnet)
method = 'ff'; % Training algorithm (ff/ct/efra)
refty = 'siggener'; % Reference signal (siggener/<var. name>)
% ------ General Initializations -------
Ts = 0.20; % Sampling period (in seconds)
samples = 200; % Number of samples in each epoch
u_0 = 0; % Initial control input
y_0 = 0; % Initial output
ulim_min = -Inf; % Minimum control input
ulim_max = Inf; % Maximum control input
% -- System to be Controlled (SIMULINK) --
integrator= 'ode45'; % Name of dif. eq. solver (f. ex. ode45 or ode15s)
sim_model = 'spm1'; % Name of SIMULINK model
% --- System to be Controlled (MATLAB) --
mat_model = 'springm'; % Name of MATLAB model
model_out = 'smout'; % Output equation (function of the states)
x0 = [0;0]; % Initial states
% ----- Neural Network Specification ------
% The "forward model file" must contain the following variables which together
% define a NNARX-model:
% NN, NetDeff, W1f, W2f
% and the "inverse model file" must contain
% NN, NetDefi, W1i, W2i
% (i.e. regressor structure, architecture definition, and weight matrices)
nnforw = 'forward'; % Name of file containing forward model
nninv = 'inverse'; % Name of file containing inverse model
% ------------ Reference Model ---------------
Am = [1 -0.7]; % Model denominator
Bm = [0.3]; % Model numerator (starts in z^-1)
% ------------ Training parameters -----------
maxiter = 8; % # of "epochs"
% --- Forgetting factor algorithm (ff) ---
% trparms = [lambda p0]
% lambda = forgetting factor (suggested value 0.995)
% p0 = Covariance matrix diagonal (1-10)
%
% --- Constant trace algorithm (ct) ---
% trparms = [lambda alpha_max alpha_min]
% lambda = forgetting factor (suggested value 0.995)
% alpha_max = Max. eigenvalue of covariance matrix (100)
% alpha_min = Min. eigenvaule of covariance matrix (0.001)
%
% --- Exponential Forgetting and Restting Algorithm (efra) ---
% trparms = [alpha beta delta lambda]
% Suggested values:
% alpha = 0.5-1
% beta = 0.001
% delta = 0.001
% lambda = 0.98
trparms = [0.995 10];
%trparms = [0.995 100 0.001];
%trparms = [1 0.001 0.001 0.98];
% ------------ Reference signal ------------
% Reference generated by the signal generator
dc = 0; % DC-level
sq_amp = 1; % Amplitude of square signals (row vector)
sq_freq = 0.1; % Frequency of square signals (column vector)
sin_amp = [0]; % Amplitude of sine signals (row vector)
sin_freq= [0]'; % Frequency of sine signals (column vector)
Nvar = 0; % Variance of white noise signal
% ------- Specify data vectors to plot --------
% plot_a and plot_b must be cell structures containing the vector names in strings
plot_a = {'ref_data','y_data','ym_data','yhat_data'};
plot_b = {'u_data'};
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -