亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? test_classify.m

?? 一個matlab的工具包,里面包括一些分類器 例如 KNN KMEAN SVM NETLAB 等等有很多.
?? M
?? 第 1 頁 / 共 2 頁
字號:
function run = test_classify(classifier)

warning('off','MATLAB:colon:operandsNotRealScalar');

% clear global preprocess;
global preprocess; 
global temp_train_file temp_test_file temp_output_file temp_model_file weka_dir mySVM_dir libSVM_dir SVMLight_dir; 
preprocess = [];

if (~isfield(preprocess, 'Message')), preprocess.Message = ''; end;
if (~isfield(preprocess, 'NumCrossFolder')), preprocess.NumCrossFolder = 3; end;
if (~isfield(preprocess, 'TrainTestSplitBoundary')), preprocess.TrainTestSplitBoundary = 100; end;
if (~isfield(preprocess, 'Normalization')), preprocess.Normalization = 1; end;
if (~isfield(preprocess, 'SizeFactor')), preprocess.SizeFactor = 0.5; end;
if (~isfield(preprocess, 'ShotAvailable')), preprocess.ShotAvailable = 0; end;
if (~isfield(preprocess, 'DataSampling')), preprocess.DataSampling = 0; end;
if (~isfield(preprocess, 'Sparse')), preprocess.Sparse = 0; end;
if (~isfield(preprocess, 'Shuffled')), preprocess.Shuffled = 0; end;
if (~isfield(preprocess, 'OutputFlag')), preprocess.OutputFlag = 'a'; end;
if (~isfield(preprocess, 'SVD')), preprocess.SVD = 0; end;
if (~isfield(preprocess, 'FLD')), preprocess.FLD = 0; end;
if (~isfield(preprocess, 'CHI')), preprocess.ChiSquare = 0; end;
if (~isfield(preprocess, 'ValidateByShot')), preprocess.ValidateByShot = 0; end;
if (~isfield(preprocess, 'Ensemble')), preprocess.Ensemble = 0; end;
if (~isfield(preprocess, 'ComputeMAP')), preprocess.ComputeMAP = 0; end;
if (~isfield(preprocess, 'Evaluation')), preprocess.Evaluation = 0; preprocess.TrainTestSplitBoundary = -2; end;
if (~isfield(preprocess, 'MultiClassType')), preprocess.MultiClassType = 0; end;
if (~isfield(preprocess, 'MultiClass') | (preprocess.MultiClassType == 0)), 
    preprocess.MultiClass.LabelType = 1; preprocess.MultiClass.CodeType = -1; preprocess.MultiClass.LossFuncType = -1;
    preprocess.MultiClass.UncertaintyFuncType = -1; preprocess.MultiClass.ProbEstimation = -1;
end;
if (~isfield(preprocess, 'ConstraintAvailable')), preprocess.ConstraintAvailable = 0; end;
if (~isfield(preprocess, 'ConstraintFileName')), preprocess.ConstraintFileName = ''; end;
if (~isfield(preprocess, 'input_file')), preprocess.input_file = ''; end;
if (~isfield(preprocess, 'output_file')), preprocess.output_file = ''; end;
if (~isfield(preprocess, 'pred_file')), preprocess.pred_file = ''; end;
if (~isfield(preprocess, 'model_file')), preprocess.model_file = ''; end;
if (~isfield(preprocess, 'WorkingDir')), preprocess.WorkingDir = ''; end;

if (nargin < 1), Report_Error; end;
[header, para, rem] = ParseCmd(classifier, '--');
if (strcmpi(header, 'classify')), 
    p = str2num(char(ParseParameter(para, {'-v'; '-sf'; '-n'; '-sh'; '-vs'; '-ds'; '-dsr'; '-svd'; '-fld';'-map'; '-if'; '-chi'; '-of'; '-pf'; '-sp'}, ...
                                          {'1'; '0'; '1'; '-1'; '1'; '0'; '0'; '0'; '0'; '0'; '0'; '0'; '0'; '0'; '0'})));
    preprocess.Vebosity = p(1);
    preprocess.Shuffled = p(2);
    preprocess.Normalization = p(3);
    preprocess.ShotAvailable = p(4);
    preprocess.ValidateByShot = p(5);
    preprocess.DataSampling = p(6);
    preprocess.DataSamplingRate = p(7);
    preprocess.SVD = p(8);
    preprocess.FLD = p(9);
    preprocess.ComputeMAP = p(10);
    preprocess.InputFormat = p(11);
    preprocess.ChiSquare = p(12);
    preprocess.OutputFormat = p(13);
    preprocess.PredFormat = p(14);
    preprocess.Sparse = p(15);
    p = ParseParameter(para, {'-t'; '-o'; '-p'; '-oflag'; '-dir'; '-drf' }, {''; ''; ''; 'a'; ''; ''});
    preprocess.input_file = char(p{1, :});
    preprocess.output_file = char(p{2, :});    
    preprocess.pred_file = char(p{3, :});    
    preprocess.OutputFlag = char(p{4, :});    
    preprocess.WorkingDir = char(p{5, :});    
    preprocess.DimReductionFile = char(p{6, :});    
    classifier = rem;   
else 
    Report_Error;
end;

% Setup the environmental varaible for directory information
if (isempty(preprocess.WorkingDir)), 
    % preprocess.WorkingDir = cd;
    filename = 'AggregatePredByShot.m'; 
    if (~exist(filename)),
        error('Cannot find the files in MATLABArsenal!');
    end;
    cur_dir = which(filename); 
    sep_pos = findstr(cur_dir, filesep); 
    preprocess.WorkingDir = cur_dir(1:sep_pos(length(sep_pos))-1);
end;
root = preprocess.WorkingDir;

temp_dir = sprintf('%s/temp', root);
if (~exist(temp_dir)),
    % eval(sprintf('!md \"%s\"', temp_dir));
    s = mkdir(root, 'temp');
    if (s ~= 1), error('Cannot create temp directory!'); end;
end;
temp_train_file = sprintf('%s/temp.train.txt', temp_dir);
temp_test_file = sprintf('%s/temp.test.txt', temp_dir);
temp_output_file = sprintf('%s/temp.output.txt', temp_dir);
temp_model_file = sprintf('%s/temp.model.txt', temp_dir);
weka_dir = sprintf('%s/weka-3-4/weka.jar', root);
mySVM_dir = sprintf('%s/svm', root);
libSVM_dir = sprintf('%s/svm', root);
SVMLight_dir = sprintf('%s/svm', root);

[header, para, rem] = ParseCmd(classifier, '--');
if (strcmpi(header, 'train_test_validate')), 
    preprocess.Evaluation = 0;
    p = str2num(char(ParseParameter(para, {'-t'}, {'-2'})));
    preprocess.TrainTestSplitBoundary = p(1);
    classifier = rem;
elseif (strcmpi(header, 'cross_validate')), 
    preprocess.Evaluation = 1;
    p = str2num(char(ParseParameter(para, {'-t'}, {'3'})));
    preprocess.NumCrossFolder = p(1);
    classifier = rem;
elseif (strcmpi(header, 'test_file_validate')), 
    preprocess.Evaluation = 2;
    p = char(ParseParameter(para, {'-t'}, {''}));
    preprocess.test_file = p(1, :);
    classifier = rem;
elseif (strcmpi(header, 'train_only')), 
    preprocess.Evaluation = 3;
    p = char(ParseParameter(para, {'-m'}, {''}));
    preprocess.model_file = p(1, :);
    temp_model_file = preprocess.model_file;
    classifier = rem;
elseif (strcmpi(header, 'test_only')), 
    preprocess.Evaluation = 4;
    p = char(ParseParameter(para, {'-m'}, {''}));
    preprocess.model_file = p(1, :);
    temp_model_file = preprocess.model_file;
    classifier = rem;
end;   

[header, para, rem] = ParseCmd(classifier, '--');
if (strcmpi(header, 'train_test_simple')), 
    preprocess.MultiClassType = 0;
    p = str2num(char(ParseParameter(para, {'-LabelType'}, {'1'})));
    preprocess.MultiClass.LabelType = p(1);
    classifier = rem;
elseif (strcmpi(header, 'train_test_multiple_class')), 
    preprocess.MultiClassType = 1;
    p = str2num(char(ParseParameter(para, {'-LabelType'; '-CodeType'; '-LossFuncType'}, {'1'; '0'; '2'})));
    preprocess.MultiClass.LabelType = p(1);
    preprocess.MultiClass.CodeType = p(2);
    preprocess.MultiClass.LossFuncType = p(3);
    preprocess.MultiClass.UncertaintyFuncType = 2; 
    preprocess.MultiClass.ProbEstimation = 0;
    classifier = rem;
elseif (strcmpi(header, 'train_test_multiple_label')), 
    preprocess.MultiClassType = 2;
    p = str2num(char(ParseParameter(para, {'-LabelType'}, {'1'})));
    preprocess.MultiClass.LabelType = p(1);
    classifier = rem;
elseif (strcmpi(header, 'train_test_multiple_class_AL')), 
    preprocess.MultiClassType = 3;
    p = str2num(char(ParseParameter(para, {'-LabelType'; '-CodeType'; '-LossFuncType'; '-ALIter'; '-ALIncrSize'}, {'1'; '0'; '2'; '4'; '10'})));
    preprocess.MultiClass.LabelType = p(1);
    preprocess.MultiClass.CodeType = p(2);
    preprocess.MultiClass.LossFuncType = p(3);
    preprocess.ActiveLearning.Iteration = p(4);
    preprocess.ActiveLearning.IncrementSize = p(5);
    preprocess.MultiClass.UncertaintyFuncType = 2; 
    preprocess.MultiClass.ProbEstimation = 0;
    classifier = rem;
end;   

% Initialize the message string

preprocess.Message = '';
if (preprocess.Evaluation == 0)
    msg = sprintf(' Train-Test Split, Boundary: %d, ', preprocess.TrainTestSplitBoundary);
    preprocess.Message = [preprocess.Message msg]; 
elseif (preprocess.Evaluation == 1)
    msg = sprintf(' Cross Validation, Folder: %d, ', preprocess.NumCrossFolder);
    preprocess.Message = [preprocess.Message msg];     
elseif (preprocess.Evaluation == 2)
    msg = sprintf(' Testing on File %s, ', preprocess.test_file);
    preprocess.Message = [preprocess.Message msg];     
elseif (preprocess.Evaluation == 3)
    msg = sprintf(' Training on File %s, ', preprocess.input_file);
    preprocess.Message = [preprocess.Message msg];     
elseif (preprocess.Evaluation == 4)
    msg = sprintf(' Testing on File %s, ', preprocess.input_file);
    preprocess.Message = [preprocess.Message msg];     
else 
    msg = sprintf(' Train-Test Split, Boundary: %d, ', preprocess.TrainTestSplitBoundary);
    preprocess.Message = [preprocess.Message msg]; 
end;

if (preprocess.MultiClassType == 0)
    msg = sprintf(' Classification, ', preprocess.TrainTestSplitBoundary);
    preprocess.Message = [preprocess.Message msg]; 
elseif (preprocess.MultiClassType == 1) 
    msg = sprintf(' Multiclass Classification Wrapper, ', preprocess.NumCrossFolder);
    preprocess.Message = [preprocess.Message msg];     
elseif (preprocess.MultiClassType == 2) 
    msg = sprintf(' Multilabel Classification Wrapper, ', preprocess.NumCrossFolder);
    preprocess.Message = [preprocess.Message msg];     
elseif (preprocess.MultiClassType == 3) 
    msg = sprintf(' Multiclass Active Learning Wrapper, ', preprocess.NumCrossFolder);
    preprocess.Message = [preprocess.Message msg];     
end;

if (preprocess.SVD == 1)
    msg = sprintf(' SVD ');
    preprocess.Message = [preprocess.Message msg]; 
end;

if (preprocess.Shuffled == 1)
    msg = sprintf(' Shuffled ');
    preprocess.Message = [preprocess.Message msg]; 
end;

if (preprocess.Sparse == 1)
    msg = sprintf(' Sparse ');
    preprocess.Message = [preprocess.Message msg]; 
end;

if (preprocess.MultiClass.CodeType == 0) 
    msg = sprintf(' Coding: 1-vs-r ');
    preprocess.Message = [preprocess.Message msg];
elseif (preprocess.MultiClass.CodeType == 1)
    msg = sprintf(' Coding: 1-vs-1 ');
    preprocess.Message = [preprocess.Message msg]; 
elseif (preprocess.MultiClass.CodeType == 2)
    msg = sprintf(' Coding: ECOC15_5 ');
    preprocess.Message = [preprocess.Message msg];
elseif (preprocess.MultiClass.CodeType == 3)
    msg = sprintf(' Coding: ECOC63_31 ');
    preprocess.Message = [preprocess.Message msg]; 
elseif (preprocess.MultiClass.CodeType == 4)
    msg = sprintf(' Coding: Random ');
    preprocess.Message = [preprocess.Message msg]; 
end;    

if (preprocess.MultiClass.LossFuncType == 0) 
    msg = sprintf(' Loss: L1 ');
    preprocess.Message = [preprocess.Message msg];
elseif (preprocess.MultiClass.LossFuncType == 1)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲大片一区二区三区| 日韩国产精品久久| 日韩国产一二三区| 粉嫩av一区二区三区在线播放| av在线播放成人| 日韩视频免费观看高清完整版 | 精品一区二区三区不卡| av高清久久久| 国产色一区二区| 免费成人你懂的| 欧美午夜精品久久久| 国产区在线观看成人精品 | 国产99久久久国产精品潘金| 欧美日本一区二区| 亚洲理论在线观看| 成人美女视频在线观看| 久久蜜桃香蕉精品一区二区三区| 免费看欧美美女黄的网站| 在线亚洲精品福利网址导航| 中文字幕一区不卡| 国产xxx精品视频大全| 久久综合av免费| 久久爱另类一区二区小说| 欧美日韩亚洲不卡| 亚洲成人综合网站| 欧美视频一区二区在线观看| 亚洲美女视频一区| 91免费小视频| 免费黄网站欧美| 69av一区二区三区| 五月婷婷久久丁香| 欧美日韩国产经典色站一区二区三区| 亚洲精品国产精华液| 色综合网色综合| 一区二区三区在线免费观看| 欧美性xxxxx极品少妇| 亚洲国产你懂的| 欧美日韩中字一区| 日韩电影在线观看电影| 欧美一级黄色片| 久久成人麻豆午夜电影| 久久一夜天堂av一区二区三区| 国产九色sp调教91| 国产日韩精品视频一区| av电影在线观看完整版一区二区 | 26uuu国产电影一区二区| 韩国三级在线一区| 国产日韩精品一区二区浪潮av| 国产麻豆欧美日韩一区| 日韩一区欧美一区| 欧美在线一区二区| 久久精品国产亚洲a| 国产日韩欧美麻豆| 色哦色哦哦色天天综合| 日韩精品久久久久久| 欧美大片日本大片免费观看| 国产精品白丝jk白祙喷水网站| 国产精品久久久爽爽爽麻豆色哟哟| 91视频一区二区三区| 天堂资源在线中文精品| 日韩欧美第一区| 成人app在线| 亚洲国产欧美日韩另类综合| 精品少妇一区二区三区在线播放 | 国产精品电影一区二区三区| 色婷婷av一区| 理论片日本一区| 伊人婷婷欧美激情| 精品久久久久久久久久久院品网| 国产成人av自拍| 国产999精品久久久久久| 亚洲综合色视频| 精品播放一区二区| 日本精品一区二区三区高清| 国产原创一区二区三区| 亚洲综合丝袜美腿| 国产亚洲成aⅴ人片在线观看| 欧美午夜一区二区三区免费大片| 国产精品18久久久久| 亚洲综合久久久| 国产无一区二区| 91精品国产综合久久福利软件| voyeur盗摄精品| 麻豆高清免费国产一区| 亚洲第一成年网| 亚洲人成网站色在线观看| 久久午夜色播影院免费高清| 欧美日韩精品是欧美日韩精品| 成人国产亚洲欧美成人综合网| 免费人成精品欧美精品| 亚洲一区二区三区中文字幕在线| 欧美国产丝袜视频| 亚洲精品一区二区三区香蕉| 欧美日韩精品欧美日韩精品一| 国产成人精品影视| 精品一区二区精品| 亚欧色一区w666天堂| 综合欧美亚洲日本| 国产亚洲精品资源在线26u| 欧美一区二区三区系列电影| 色94色欧美sute亚洲线路一久| 高清不卡一二三区| 国产毛片精品国产一区二区三区| 日本女优在线视频一区二区| 亚洲午夜精品一区二区三区他趣| 亚洲欧美一区二区三区国产精品| 国产亚洲精品精华液| 久久夜色精品国产噜噜av| 777奇米成人网| 欧美精品1区2区3区| 欧美影院精品一区| 日本高清不卡一区| 色偷偷88欧美精品久久久| www.视频一区| 99久久精品国产网站| 成人午夜免费电影| 99re这里都是精品| 色婷婷久久久久swag精品| 色综合天天做天天爱| 色悠久久久久综合欧美99| 91精品福利视频| 欧美日韩一卡二卡| 3atv一区二区三区| 日韩一区二区免费在线电影 | 激情综合五月婷婷| 国产一区二区中文字幕| 国产一区二区免费在线| 国产一区二区不卡| 成人高清视频在线| 色综合色综合色综合色综合色综合| 色婷婷久久久综合中文字幕| 91高清在线观看| 欧美一级高清大全免费观看| 26uuu精品一区二区三区四区在线| 久久久精品tv| 国内精品免费**视频| 国产精品资源在线| 一道本成人在线| 欧美一区二区三区男人的天堂| 欧美电影免费观看高清完整版| 久久先锋影音av| 亚洲人成人一区二区在线观看| 亚洲高清视频在线| 韩国在线一区二区| 色综合激情五月| 日韩精品最新网址| 国产精品免费aⅴ片在线观看| 亚洲宅男天堂在线观看无病毒| 蜜桃传媒麻豆第一区在线观看| 懂色中文一区二区在线播放| 色婷婷久久久亚洲一区二区三区| 91精品国产综合久久福利软件| 国产亚洲制服色| 亚洲综合在线五月| 国产综合色产在线精品| 91视频国产资源| 日韩免费高清视频| 亚洲美腿欧美偷拍| 国产毛片精品视频| 欧美日韩免费电影| 国产精品理伦片| 蜜臀av亚洲一区中文字幕| 成人av网站免费| 欧美tickling挠脚心丨vk| 亚洲色图在线看| 国产精品一区二区在线播放| 欧美色图天堂网| 日本一区免费视频| 久久99国产精品久久| 日本韩国欧美国产| 国产女同互慰高潮91漫画| 日韩在线一区二区三区| 91在线视频在线| 国产日韩一级二级三级| 秋霞影院一区二区| 在线观看一区二区视频| 国产精品网曝门| 韩国一区二区视频| 日韩精品最新网址| 日韩av在线发布| 欧美无砖专区一中文字| 综合久久久久久久| 成人一区二区三区中文字幕| 日韩女优视频免费观看| 日韩影视精彩在线| 欧美精品一级二级三级| 亚洲一级片在线观看| 99精品欧美一区二区三区小说| 久久精品一区四区| 国产一区二区三区免费| 欧美大片拔萝卜| 精品一区中文字幕| 亚洲欧美日韩系列| 91丝袜高跟美女视频| 国产精品九色蝌蚪自拍| 99久久精品情趣| 亚洲欧美日韩精品久久久久| 99精品视频在线播放观看| 亚洲欧美怡红院| 91精品福利视频|