亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? trig.pm

?? UNIX下perl實現代碼
?? PM
字號:
## Trigonometric functions, mostly inherited from Math::Complex.# -- Jarkko Hietaniemi, since April 1997# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)#require Exporter;package Math::Trig;use 5.005_64;use strict;use Math::Complex qw(:trig);our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);@ISA = qw(Exporter);$VERSION = 1.00;my @angcnv = qw(rad2deg rad2grad	     deg2rad deg2grad	     grad2rad grad2deg);@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},	   @angcnv);my @rdlcnv = qw(cartesian_to_cylindrical		cartesian_to_spherical		cylindrical_to_cartesian		cylindrical_to_spherical		spherical_to_cartesian		spherical_to_cylindrical);@EXPORT_OK = (@rdlcnv, 'great_circle_distance');%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);sub pi2  () { 2 * pi }sub pip2 () { pi / 2 }sub DR  () { pi2/360 }sub RD  () { 360/pi2 }sub DG  () { 400/360 }sub GD  () { 360/400 }sub RG  () { 400/pi2 }sub GR  () { pi2/400 }## Truncating remainder.#sub remt ($$) {    # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.    $_[0] - $_[1] * int($_[0] / $_[1]);}## Angle conversions.#sub rad2rad($)     { remt($_[0], pi2) }sub deg2deg($)     { remt($_[0], 360) }sub grad2grad($)   { remt($_[0], 400) }sub rad2deg ($;$)  { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }sub deg2rad ($;$)  { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }sub cartesian_to_spherical {    my ( $x, $y, $z ) = @_;    my $rho = sqrt( $x * $x + $y * $y + $z * $z );    return ( $rho,             atan2( $y, $x ),             $rho ? acos( $z / $rho ) : 0 );}sub spherical_to_cartesian {    my ( $rho, $theta, $phi ) = @_;    return ( $rho * cos( $theta ) * sin( $phi ),             $rho * sin( $theta ) * sin( $phi ),             $rho * cos( $phi   ) );}sub spherical_to_cylindrical {    my ( $x, $y, $z ) = spherical_to_cartesian( @_ );    return ( sqrt( $x * $x + $y * $y ), $_[1], $z );}sub cartesian_to_cylindrical {    my ( $x, $y, $z ) = @_;    return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );}sub cylindrical_to_cartesian {    my ( $rho, $theta, $z ) = @_;    return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );}sub cylindrical_to_spherical {    return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );}sub great_circle_distance {    my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;    $rho = 1 unless defined $rho; # Default to the unit sphere.    my $lat0 = pip2 - $phi0;    my $lat1 = pip2 - $phi1;    return $rho *        acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +             sin( $lat0 ) * sin( $lat1 ) );}=pod=head1 NAMEMath::Trig - trigonometric functions=head1 SYNOPSIS	use Math::Trig;	$x = tan(0.9);	$y = acos(3.7);	$z = asin(2.4);	$halfpi = pi/2;	$rad = deg2rad(120);=head1 DESCRIPTIONC<Math::Trig> defines many trigonometric functions not defined by thecore Perl which defines only the C<sin()> and C<cos()>.  The constantB<pi> is also defined as are a few convenience functions for angleconversions.=head1 TRIGONOMETRIC FUNCTIONSThe tangent=over 4=item B<tan>=backThe cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cotare aliases)B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>The arcus (also known as the inverse) functions of the sine, cosine,and tangentB<asin>, B<acos>, B<atan>The principal value of the arc tangent of y/xB<atan2>(y, x)The arcus cofunctions of the sine, cosine, and tangent (acosec/acscand acotan/acot are aliases)B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>The hyperbolic sine, cosine, and tangentB<sinh>, B<cosh>, B<tanh>The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/cschand cotanh/coth are aliases)B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>The arcus (also known as the inverse) functions of the hyperbolicsine, cosine, and tangentB<asinh>, B<acosh>, B<atanh>The arcus cofunctions of the hyperbolic sine, cosine, and tangent(acsch/acosech and acoth/acotanh are aliases)B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>The trigonometric constant B<pi> is also defined.$pi2 = 2 * B<pi>;=head2 ERRORS DUE TO DIVISION BY ZEROThe following functions	acoth	acsc	acsch	asec	asech	atanh	cot	coth	csc	csch	sec	sech	tan	tanhcannot be computed for all arguments because that would mean dividingby zero or taking logarithm of zero. These situations cause fatalruntime errors looking like this	cot(0): Division by zero.	(Because in the definition of cot(0), the divisor sin(0) is 0)	Died at ...or	atanh(-1): Logarithm of zero.	Died at...For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For theC<atanh>, C<acoth>, the argument cannot be C<1> (one).  For theC<atanh>, C<acoth>, the argument cannot be C<-1> (minus one).  For theC<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *pi>, where I<k> is any integer.=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTSPlease note that some of the trigonometric functions can break outfrom the B<real axis> into the B<complex plane>. For exampleC<asin(2)> has no definition for plain real numbers but it hasdefinition for complex numbers.In Perl terms this means that supplying the usual Perl numbers (alsoknown as scalars, please see L<perldata>) as input for thetrigonometric functions might produce as output results that no moreare simple real numbers: instead they are complex numbers.The C<Math::Trig> handles this by using the C<Math::Complex> packagewhich knows how to handle complex numbers, please see L<Math::Complex>for more information. In practice you need not to worry about gettingcomplex numbers as results because the C<Math::Complex> takes care ofdetails like for example how to display complex numbers. For example:	print asin(2), "\n";should produce something like this (take or leave few last decimals):	1.5707963267949-1.31695789692482iThat is, a complex number with the real part of approximately C<1.571>and the imaginary part of approximately C<-1.317>.=head1 PLANE ANGLE CONVERSIONS(Plane, 2-dimensional) angles may be converted with the following functions.	$radians  = deg2rad($degrees);	$radians  = grad2rad($gradians);	$degrees  = rad2deg($radians);	$degrees  = grad2deg($gradians);	$gradians = deg2grad($degrees);	$gradians = rad2grad($radians);The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.If you don't want this, supply a true second argument:	$zillions_of_radians  = deg2rad($zillions_of_degrees, 1);	$negative_degrees     = rad2deg($negative_radians, 1);You can also do the wrapping explicitly by rad2rad(), deg2deg(), andgrad2grad().=head1 RADIAL COORDINATE CONVERSIONSB<Radial coordinate systems> are the B<spherical> and the B<cylindrical>systems, explained shortly in more detail.You can import radial coordinate conversion functions by using theC<:radial> tag:    use Math::Trig ':radial';    ($rho, $theta, $z)     = cartesian_to_cylindrical($x, $y, $z);    ($rho, $theta, $phi)   = cartesian_to_spherical($x, $y, $z);    ($x, $y, $z)           = cylindrical_to_cartesian($rho, $theta, $z);    ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);    ($x, $y, $z)           = spherical_to_cartesian($rho, $theta, $phi);    ($rho_c, $theta, $z)   = spherical_to_cylindrical($rho_s, $theta, $phi);B<All angles are in radians>.=head2 COORDINATE SYSTEMSB<Cartesian> coordinates are the usual rectangular I<(x, y,z)>-coordinates.Spherical coordinates, I<(rho, theta, pi)>, are three-dimensionalcoordinates which define a point in three-dimensional space.  They arebased on a sphere surface.  The radius of the sphere is B<rho>, alsoknown as the I<radial> coordinate.  The angle in the I<xy>-plane(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>coordinate.  The angle from the I<z>-axis is B<phi>, also known as theI<polar> coordinate.  The `North Pole' is therefore I<0, 0, rho>, andthe `Bay of Guinea' (think of the missing big chunk of Africa) I<0,pi/2, rho>.  In geographical terms I<phi> is latitude (northwardpositive, southward negative) and I<theta> is longitude (eastwardpositive, westward negative).B<BEWARE>: some texts define I<theta> and I<phi> the other way round,some texts define the I<phi> to start from the horizontal plane, sometexts use I<r> in place of I<rho>.Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensionalcoordinates which define a point in three-dimensional space.  They arebased on a cylinder surface.  The radius of the cylinder is B<rho>,also known as the I<radial> coordinate.  The angle in the I<xy>-plane(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>coordinate.  The third coordinate is the I<z>, pointing up from theB<theta>-plane.=head2 3-D ANGLE CONVERSIONSConversions to and from spherical and cylindrical coordinates areavailable.  Please notice that the conversions are not necessarilyreversible because of the equalities like I<pi> angles being equal toI<-pi> angles.=over 4=item cartesian_to_cylindrical        ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);=item cartesian_to_spherical        ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);=item cylindrical_to_cartesian        ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);=item cylindrical_to_spherical        ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.=item spherical_to_cartesian        ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);=item spherical_to_cylindrical        ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.=back=head1 GREAT CIRCLE DISTANCESYou can compute spherical distances, called B<great circle distances>,by importing the C<great_circle_distance> function:	use Math::Trig 'great_circle_distance'  $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);The I<great circle distance> is the shortest distance between twopoints on a sphere.  The distance is in C<$rho> units.  The C<$rho> isoptional, it defaults to 1 (the unit sphere), therefore the distancedefaults to radians.If you think geographically the I<theta> are longitudes: zero at theGreenwhich meridian, eastward positive, westward negative--and theI<phi> are latitudes: zero at the North Pole, northward positive,southward negative.  B<NOTE>: this formula thinks in mathematics, notgeographically: the I<phi> zero is at the North Pole, not at theEquator on the west coast of Africa (Bay of Guinea).  You need tosubtract your geographical coordinates from I<pi/2> (also known as 90degrees).  $distance = great_circle_distance($lon0, pi/2 - $lat0,                                    $lon1, pi/2 - $lat1, $rho);=head1 EXAMPLESTo calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N139.8E) in kilometers:        use Math::Trig qw(great_circle_distance deg2rad);        # Notice the 90 - latitude: phi zero is at the North Pole.	@L = (deg2rad(-0.5), deg2rad(90 - 51.3));        @T = (deg2rad(139.8),deg2rad(90 - 35.7));        $km = great_circle_distance(@L, @T, 6378);The answer may be off by few percentages because of the irregular(slightly aspherical) form of the Earth.  The used formula	lat0 = 90 degrees - phi0	lat1 = 90 degrees - phi1	d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) +                       sin(lat0) * sin(lat1))is also somewhat unreliable for small distances (for locationsseparated less than about five degrees) because it uses arc cosinewhich is rather ill-conditioned for values close to zero.=head1 BUGSSaying C<use Math::Trig;> exports many mathematical routines in thecaller environment and even overrides some (C<sin>, C<cos>).  This isconstrued as a feature by the Authors, actually... ;-)The code is not optimized for speed, especially because we useC<Math::Complex> and thus go quite near complex numbers while doingthe computations even when the arguments are not. This, however,cannot be completely avoided if we want things like C<asin(2)> to givean answer instead of giving a fatal runtime error.=head1 AUTHORSJarkko Hietaniemi <F<jhi@iki.fi>> and Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.=cut# eof

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品日韩成人| 精品在线观看视频| 久久国产免费看| 99国产精品国产精品久久| 欧美日韩精品久久久| 国产欧美视频一区二区| 天天射综合影视| jlzzjlzz国产精品久久| 日韩精品一区二区三区三区免费| 国产区在线观看成人精品| 日韩成人免费在线| 色综合中文字幕国产 | 欧美一区二区三区人| 国产亚洲综合在线| 奇米四色…亚洲| 欧美在线免费观看视频| 国产精品久久午夜| 国产高清精品网站| 欧美成人国产一区二区| 亚洲成人免费视| 色综合色综合色综合色综合色综合| 欧美电影免费提供在线观看| 亚洲国产日韩a在线播放| 99久久精品国产网站| 国产欧美精品国产国产专区| 久久99深爱久久99精品| 欧美一区二区三区四区高清| 亚洲国产日韩a在线播放| 91久久香蕉国产日韩欧美9色| 国产精品青草综合久久久久99| 国产美女一区二区| 久久蜜桃香蕉精品一区二区三区| 蜜桃久久久久久| 日韩视频一区二区| 美国三级日本三级久久99| 欧美一三区三区四区免费在线看| 午夜精品一区二区三区免费视频| 欧美日韩一级片在线观看| 亚洲永久精品大片| 欧美系列在线观看| 天堂在线亚洲视频| 欧美一区二区美女| 精品一区二区在线播放| 精品欧美一区二区三区精品久久| 久久99精品国产.久久久久| 26uuu精品一区二区三区四区在线| 久久成人免费日本黄色| 久久久久久免费| av欧美精品.com| 亚洲色欲色欲www在线观看| 一本到不卡免费一区二区| 一区二区三区四区激情| 欧美亚洲国产一区二区三区va | 亚洲欧美在线视频观看| 色婷婷久久99综合精品jk白丝| 亚洲精品免费在线| 欧美日本韩国一区二区三区视频 | 欧美图片一区二区三区| 婷婷成人激情在线网| 欧美mv日韩mv国产网站app| 国产美女视频91| 最新日韩av在线| 欧美日韩国产色站一区二区三区| 美国欧美日韩国产在线播放| 欧美国产1区2区| 欧美中文字幕一区二区三区亚洲| 免费人成精品欧美精品| 国产亚洲短视频| 欧美在线免费视屏| 国产麻豆日韩欧美久久| 亚洲伦在线观看| 欧美成人精品二区三区99精品| 国产成人h网站| 午夜欧美视频在线观看| 国产日产欧美一区二区视频| 91黄色激情网站| 国产精品中文有码| 亚洲bt欧美bt精品777| 久久一留热品黄| 欧美日韩卡一卡二| 成人黄色小视频在线观看| 午夜精品久久一牛影视| 国产精品久久久久aaaa樱花 | 成人国产亚洲欧美成人综合网| 亚洲伊人色欲综合网| 日本午夜精品视频在线观看| 久久精品人人做人人爽人人| 欧美日韩国产在线播放网站| 国产成人a级片| 美女任你摸久久 | 国产日韩高清在线| 91精品国产综合久久久久久| 99精品视频一区| 国产一本一道久久香蕉| 蜜桃视频一区二区| 亚洲国产欧美在线| 亚洲欧美激情一区二区| 国产欧美日韩亚州综合| 欧美xxxx在线观看| 欧美三电影在线| 日本精品一区二区三区高清| 国产成人av电影在线播放| 奇米精品一区二区三区在线观看 | 91精品国产欧美日韩| 91成人网在线| 91丨porny丨中文| 成人永久看片免费视频天堂| 极品少妇xxxx精品少妇偷拍| 丝袜美腿一区二区三区| 亚洲一区二区三区国产| 亚洲男人天堂av网| 椎名由奈av一区二区三区| 精品蜜桃在线看| 欧美草草影院在线视频| 日韩欧美色综合| 日韩女优毛片在线| 亚洲女女做受ⅹxx高潮| 国产精品久久三| 中文字幕一区二区三区在线播放 | 欧美一区二区在线看| 欧美人狂配大交3d怪物一区| 欧美亚洲动漫另类| 欧美私人免费视频| 欧美日韩在线播放三区四区| 欧美日韩综合一区| 欧美视频精品在线| 欧美精品在线视频| 51精品国自产在线| 精品国产乱码久久久久久蜜臀 | 久久er99精品| 国产精品亚洲午夜一区二区三区| 国产成人亚洲精品青草天美| 粉嫩av一区二区三区| av激情成人网| 欧美视频完全免费看| 51久久夜色精品国产麻豆| 久久综合五月天婷婷伊人| 久久久不卡网国产精品一区| 中文欧美字幕免费| 亚洲精品久久久久久国产精华液| 亚洲日本va在线观看| 亚洲一区视频在线| 久久国内精品自在自线400部| 国产美女在线观看一区| 色综合婷婷久久| 91精品国产麻豆国产自产在线 | 一区二区中文字幕在线| 亚洲夂夂婷婷色拍ww47| 免费成人深夜小野草| 国产高清亚洲一区| 欧美在线高清视频| 日韩情涩欧美日韩视频| 中文子幕无线码一区tr| 亚洲国产三级在线| 国产在线精品国自产拍免费| 97久久人人超碰| 欧美一二三区精品| 中文字幕在线一区二区三区| 午夜天堂影视香蕉久久| 国产成人午夜精品5599| 欧美在线小视频| 国产偷国产偷亚洲高清人白洁| 亚洲精品视频在线观看免费| 免费看精品久久片| 色国产综合视频| 久久久精品免费免费| 99re亚洲国产精品| 欧美一区二区人人喊爽| 亚洲精品高清在线观看| 国产尤物一区二区| 欧美夫妻性生活| 最新成人av在线| 国产精品99久久久久久久vr | www.久久久久久久久| 欧美一个色资源| 亚洲国产综合91精品麻豆| 国产精品一区在线观看乱码| 6080亚洲精品一区二区| 最新热久久免费视频| 国产成人精品一区二区三区四区| 欧美高清视频www夜色资源网| 1000精品久久久久久久久| 国产剧情在线观看一区二区| 欧美电影影音先锋| 亚洲三级免费电影| 粉嫩一区二区三区在线看| 精品成人私密视频| 久久99精品国产| 91精品婷婷国产综合久久竹菊| 亚洲精品久久嫩草网站秘色| 成人sese在线| 亚洲国产成人在线| 国产成人夜色高潮福利影视| 精品欧美黑人一区二区三区| 肉色丝袜一区二区| 欧美日韩精品一区二区在线播放 | 国产精品激情偷乱一区二区∴| 久久99国内精品| 精品国产电影一区二区 | 亚洲gay无套男同|