亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? 基于測(cè)地距離不變性的非線性降維算法源碼
??
字號(hào):
Instructions for Isomap code, Release 1---------------------------------------Author: Josh Tenenbaum (jbt@psych.stanford.edu)        [Dijkstra code by Mark Steyvers (msteyver@psych.stanford.edu)]Date: December 22, 2000Website for updates: http://isomap.stanford.edu0. Copyright notice    Isomap code -- (c) 1998-2000 Josh Tenenbaum    This code is provided as is, with no guarantees except that     bugs are almost surely present.  Published reports of research     using this code (or a modified version) should cite the     article that describes the algorithm:       J. B. Tenenbaum, V. de Silva, J. C. Langford (2000).  A global      geometric framework for nonlinear dimensionality reduction.        Science 290 (5500): 2319-2323, 22 December 2000.      Comments and bug reports are welcome.  Email to jbt@psych.stanford.edu.     I would also appreciate hearing about how you used this code,     improvements that you have made to it, or translations into other    languages.        You are free to modify, extend or distribute this code, as long     as this copyright notice is included whole and unchanged.  1. Contents This package of Matlab (version 5.3) code implements the Isomapalgorithm of Tenenbaum, de Silva, and Langford (2000) [TdSL].  Thecontents of the file "IsomapR1.tar" are:Isomap.mIsomapII.mL2_distance.m Readmedfun.mdijk.m dijkstra.cpp dijkstra.dll (Windows binary produced by "mex -O dijkstra")dijkstra.m swiss_roll_data.matThe data file "swiss_roll_data" contains the input-space coordinates("X_data") and the known low-dimensional manifold coordinates("Y_data") for 20,000 data points on the Swiss roll.Separately available at isomap.stanford.edu is a large data file of synthetic face images, "face_data.mat.Z".  The face data file containsimages of 698 faces ("images"), the projections of those facesonto the first 240 (scaled) principal components ("image_pcs"), and the known pose and lighting parameters for each face ("poses", "lights").  2. Getting started  (Isomap.m)Isomap.m implements the basic version of the algorithm described in[TdSL].  The algorithm takes as input the distances between pointsin a high-dimensional observation space, and returns as output theircoordinates in a low-dimensional embedding that best preserves theirintrinsic geodesic distances. Try it out on N=1000 points from the "Swiss roll" data set:>> load swiss_roll_data>> D = L2_distance(X_data(:,1:1000), X_data(:,1:1000), 1); To run Isomap with K = 7 neighbors/point, and produce embeddingsin dimensions 1, 2, ..., 10, type these commands: >> options.dims = 1:10;>> [Y, R, E] = Isomap(D, 'k', 7, options); The other options for the code are explained in the header of Isomap.m.  The only subtle option is "option.comp", which specifies which connectedcomponent to embed in the final step of the algorithm when more thanone component has been detected in the neighborhood graph.  The defaultis to embed the largest component. This code should work reasonably well for data sets with 1000 or fewerpoints.  For larger data sets, consider using the advanced code describedbelow. 3. Advanced code  (IsomapII.m)IsomapII.m implements a more advanced version of the algorithm thatexploits the sparsity of the neighborhood graph in computing shortest-pathdistances, and can also exploit the redundancy of the distances in constructing a low-dimensional embedding.  IsomapII uses Dijkstra's algorithm to compute graph distances.IsomapII works optimally when the file "dijkstra.cpp" (which usesFibonacci heap data structures) has been compiled (with the command"mex -O dijkstra.cpp") to produce "dijkstra.dll".  If IsomapII can'tfind a file called dijkstra.dll, it will default to a much slowerMatlab implementation of Dijkstra's algorithm in dijk.m.Alternatively, setting "option.dijkstra = 0" tells IsomapII to use aMatlab implementation of Floyd's algorithm (also used in Isomap.m),which is generally faster than dijk.m for small-to-medium-size datasets but does not exploit sparsity to achieve better time and spaceefficiency for large data sets.  Both dijk.m and the Floyd algorithmare much much slower than dijkstra.dll, so the latter should be usedif at all possible.  This code package includes a version ofdijkstra.dll suitable for running on Windows platforms.For very large data sets, it is impractical to store in memory a fullN x N distance matrix, as Isomap produces after step 2 (computingshortest-path distances), or to calculate its eigenvectors, as Isomapdoes in step 3 (constructing a low-dimensional embedding).  However,in many cases where the data lie on a low-dimensional manifold, thedistances computed in step 2 are heavily redundant and most of themcan be ignored with little effect on the final embedding.  IsomapIIconstructs embeddings that, rather than trying to preserve distancesbetween all pairs of points, preserve only the distances between allpoints and a subset of "landmark" points.The user specifies which points to use as landmarks (in theoptions.landmarks field).  Setting "options.landmarks = 1:N" (i.e.the entire data set) makes step 3 of IsomapII equivalent to classicalmultidimensional scaling (MDS); this is just as in Isomap.m, and it isthe default mode for IsomapII.  Choosing a much smaller set oflandmarks (e.g. by sampling randomly, or by using some subset of thedata that is known a priori to be representative) can often be quite agood approximation.  Try this version of the Swiss roll example withN=1000 data points but only 50 (random) landmark points:>> load swiss_roll_data>> D = L2_distance(X_data(:,1:1000), X_data(:,1:1000), 1); >> options.dims = 1:10;>> options.landmarks = 1:50; >> [Y, R, E] = IsomapII(D, 'k', 7, options); We do not know of any prior studies of the use of landmark points withclassical MDS, and we have only just begun to explore this approach asan extension to Isomap.  A more detailed discussion of the use oflandmark points in Isomap and classical MDS will be presented inSteyvers, de Silva, and Tenenbaum (in preparation, athttp://isomap.stanford.edu).  The use of landmark points in nonmetricMDS for data visualization is discussed briefly in a paper by Buja,Swayne, Littman, and Dean ("XGvis: Interactive Data Visualization withMultidimensional scaling", J. Comp. & Graph. Statistics, http://www.research.att.com/areas/stat/xgobi/#xgvis-paper).To facilitate working with large data sets, IsomapII can take as inputdistances in one of three formats:Mode 1: A full N x N matrixMode 2: A sparse N x N matrixMode 3: A distance function (see sample: "dfun.m")Mode 1 is equivalent to Isomap.m (except for the use of dijkstra.dll, which will usually be much faster than Isomap.m).  Mode 2 is designed for cases where the distances between nearby pointsare known, but the differences between faraway points are not known.The sparse input matrix is assumed to contain distances between eachpoint and a set of neighboring points, from which the graph neighborswill be chosen using the standard K or epsilon methods.  Any missingentries in the sparse input matrix are effectively assumed to beinfinite (NOT zero) -- these represents non-neighboring pairs of points.  Except for the sparsity of the input matrix, Mode 2 does not differin any noticeable way from Mode 1. Mode 3 is designed for cases where the input-space distances have notalready been computed explicitly.  The user provides a distancefunction, which takes as input one argument, i, and returns as outputa row vector containing the input-space distances from all N points topoint i.  A sample distance function, "dfun.m", is provided.  Notethat the distance function may have to use a global variable in orderto encode the information necessary to compute the appropriatedistances.  For example, dfun.m assumes that the coordinates of pointsin the high-dimensional input space are encoded in the global variableX.  It then uses these coordinates to compute Euclidean distances ininput space.  Try this example: >> load swiss_roll_data>> global X>> X = X_data(:,1:1000); >> options.dims = 1:10;>> options.landmarks = 1:size(X,2); >> [Y, R, E] = IsomapII('dfun', 'k', 7, options); This should give exactly the same results (subject to numerical errorand sign changes) as the first example in Section 2, but much morequickly!  Using a distance function rather than a distance matrixallows IsomapII to handle much larger data sets (we have tested it upto N=20,000) than the simple Isomap code can handle.  Also, note thatthe distance function need not be Euclidean.  Depending on theapplication, domain-specific knowledge may be useful for designing amore sophisticated distance function (as in Fig. 1B of [TdSL]).

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
777亚洲妇女| 亚洲三级在线免费观看| 久久精品视频免费观看| 欧美经典一区二区| 亚洲美女淫视频| 爽爽淫人综合网网站| 韩国精品一区二区| eeuss影院一区二区三区| 色综合欧美在线视频区| 欧美精品自拍偷拍| 精品999在线播放| 亚洲欧美一区二区久久| 日韩电影一区二区三区| 国产精品99久久久久久宅男| 色噜噜久久综合| 欧美www视频| 亚洲六月丁香色婷婷综合久久| 欧美精品xxxxbbbb| 欧美一级在线视频| 久久精品一区八戒影视| 中文字幕一区二区三| 亚洲国产精品久久不卡毛片| 91丨porny丨蝌蚪视频| 国产人妖乱国产精品人妖| 欧美精品一级二级| 国产一区二区三区久久久| 26uuu精品一区二区在线观看| 亚洲人成网站在线| 激情综合色播五月| 欧美高清视频在线高清观看mv色露露十八 | 国产精品嫩草影院com| 国产精品二区一区二区aⅴ污介绍| 国产日韩欧美一区二区三区乱码| 中文字幕亚洲欧美在线不卡| 蜜桃视频在线一区| 成人99免费视频| 欧美成人福利视频| 亚洲精品视频自拍| 99久久精品国产观看| 亚洲欧美国产高清| 91美女片黄在线观看91美女| 国产精品无遮挡| 国产乱子轮精品视频| 久久影视一区二区| 青椒成人免费视频| 91麻豆精品国产91久久久更新时间| 欧美videos中文字幕| 亚洲成人精品影院| 色综合久久99| 亚洲电影在线播放| 色偷偷成人一区二区三区91| 欧美韩国日本一区| 国模冰冰炮一区二区| 在线观看中文字幕不卡| 精品国产乱码久久久久久影片| 亚洲日本中文字幕区| 不卡的看片网站| 欧美tickling挠脚心丨vk| 夜夜嗨av一区二区三区网页 | 中文字幕一区二区三区不卡在线| 五月天中文字幕一区二区| 91视频免费观看| 亚洲日本乱码在线观看| 欧美mv日韩mv国产网站app| 久久99精品国产.久久久久久| 一区二区免费看| 亚洲国产精品影院| 91成人在线精品| 亚洲欧美经典视频| 成人av高清在线| 欧美激情一区三区| 国产成人精品免费视频网站| 亚洲精品一线二线三线| 久久精品国产免费| 欧美va日韩va| 国产真实乱子伦精品视频| 欧美成va人片在线观看| 久久国产精品色| 日韩欧美的一区| 久久国产乱子精品免费女| 日韩欧美在线123| 捆绑调教美女网站视频一区| 日韩欧美二区三区| 久久99热这里只有精品| 精品国产免费人成在线观看| 国内偷窥港台综合视频在线播放| 精品国产一区二区三区不卡| 国产在线视视频有精品| 国产亚洲一本大道中文在线| 国产精品一区三区| 国产精品久久久久久久久动漫 | 91麻豆精品国产91| 美女脱光内衣内裤视频久久网站| 欧美大肚乱孕交hd孕妇| 国产精品一二三四五| 国产精品久久久爽爽爽麻豆色哟哟| av男人天堂一区| 亚洲一区二区欧美| 日韩欧美一级二级| 福利一区福利二区| 亚洲精品免费看| 91麻豆精品国产自产在线| 美女视频黄久久| 亚洲国产成人av网| 欧美午夜免费电影| 欧美韩日一区二区三区四区| 色婷婷av一区二区三区gif | 97精品电影院| 亚洲欧美日韩在线| 欧美影院精品一区| 一区二区三区产品免费精品久久75| 欧美午夜视频网站| 亚洲1区2区3区视频| 精品福利一区二区三区 | 国产日韩欧美精品电影三级在线| 国产福利一区二区| 亚洲天堂2016| 欧美性欧美巨大黑白大战| 亚洲成年人影院| 精品日韩欧美在线| 粉嫩高潮美女一区二区三区| 国产精品美女久久久久久久久 | 在线观看网站黄不卡| 日日摸夜夜添夜夜添国产精品| 欧美大片拔萝卜| 成人免费精品视频| 亚洲在线观看免费视频| 欧美一区二区三区喷汁尤物| 奇米影视一区二区三区| 中文字幕 久热精品 视频在线| 91网上在线视频| 日韩影院免费视频| 国产日韩欧美不卡| 日本道在线观看一区二区| 五月综合激情日本mⅴ| 国产网站一区二区| 在线免费观看成人短视频| 麻豆国产欧美日韩综合精品二区 | 亚洲精品视频在线观看免费| 日韩欧美一区在线| 99精品热视频| 免费在线看成人av| 欧美激情在线看| 欧美精品一卡二卡| 国产一区二区三区在线看麻豆| 亚洲成人av在线电影| 国产日产欧美一区二区三区| 欧美亚洲免费在线一区| 看电影不卡的网站| 亚洲精品网站在线观看| 欧美tk丨vk视频| 欧美在线观看视频在线| 国产精品1区2区| 亚洲国产日韩在线一区模特| 国产亚洲精品久| 在线看国产一区| 99久久夜色精品国产网站| 蜜臀av一区二区在线免费观看| 亚洲天堂2014| 精品国产91乱码一区二区三区 | 久久伊人中文字幕| 欧美色国产精品| 成人一级视频在线观看| 7777精品伊人久久久大香线蕉超级流畅 | 精品日韩一区二区| 欧美性三三影院| 国产高清精品在线| 国产精品久99| 日韩免费视频线观看| 色婷婷综合中文久久一本| 国产尤物一区二区| 性做久久久久久免费观看欧美| 久久综合九色综合欧美98 | 亚洲日本va午夜在线电影| 日韩欧美一区电影| 在线观看三级视频欧美| 成人美女视频在线看| 亚洲第一二三四区| 亚洲自拍与偷拍| 不卡区在线中文字幕| 国产在线一区二区| 日韩**一区毛片| 一区二区三区精密机械公司| 国产精品高潮久久久久无| 亚洲精品一区二区三区在线观看| 欧美日韩日本视频| 91高清在线观看| 一本大道av一区二区在线播放| 国产a精品视频| 国产精品一品二品| 精品无人码麻豆乱码1区2区| 日韩精品一二三四| 秋霞午夜鲁丝一区二区老狼| 亚洲va欧美va国产va天堂影院| 亚洲欧美乱综合| 亚洲天堂福利av| ●精品国产综合乱码久久久久| 亚洲久本草在线中文字幕| 中文字幕一区二区三区在线观看 | 精品一区二区av|