?? ex2bvp.m
字號:
function ex2bvp
%EX2BVP Example 2 of the BVP tutorial.
% A standard linear problem with a boundary layer at the origin.
% The differential equation y'' + 3*p*y/(p + t^2)^2 = 0 has the
% analytical solution y(t) = t/sqrt(p + t^2). The parameter p
% is taken to be 1e-5, a common value in tests. The solution is
% to have specified values at t = -0.1 and +0.1, values taken from
% this analytical solution.
%
% The default RelTol of 1e-3 gives an acceptable solution, but
% reducing RelTol to 1e-4 resolves better the boundary layer. A
% constant guess is used for RelTol = 1e-3. The same guess could be
% used for RelTol = 1e-4, but a very much better guess is provided
% by the solution previously computed for RelTol = 1e-3.
% Evaluate the analytical solution for comparison.
tt = -0.1:0.01:+0.1;
p = 1e-5;
yy = tt ./ sqrt(p + tt .^2);
options = bvpset('stats','on','Fjacobian',@ex2Jac);
% BVPINT is used to specify an initial guess for the mesh of 10
% equally spaced points. A constant guess based on a straight line
% between the boundary values for y is 0 for y(t) and 10 for y'(t).
solinit = bvpinit(linspace(-0.1,0.1,10),[0 10]);
sol = bvp4c(@ex2ode,@ex2bc,solinit, options);
t = sol.x;
y = sol.y;
figure
plot(t,y(1,:),tt,yy,'*')
axis([-0.1 0.1 -1.1 1.1])
title(['Linear boundary layer problem with RelTol = 1e-3.'])
xlabel('t')
ylabel('y and analytical (*) solutions')
fprintf('\n');
% A smaller RelTol is used to resolve better the boundary layer.
% The previous solution provides an excellent guess.
options = bvpset(options,'RelTol',1e-4);
sol = bvp4c(@ex2ode,@ex2bc,sol,options);
t = sol.x;
y = sol.y;
figure
plot(t,y(1,:),tt,yy,'*')
axis([-0.1 0.1 -1.1 1.1])
title(['Linear boundary layer problem with RelTol = 1e-4.'])
xlabel('t')
ylabel('y and analytical (*) solutions')
% --------------------------------------------------------------------------
function dydt = ex2ode(t,y)
%EX2ODE ODE function for Example 2 of the BVP tutorial.
% The components of y correspond to the original variables
% as y(1) = y, y(2) = y'.
p = 1e-5;
dydt = [ y(2)
-3*p*y(1)/(p+t^2)^2];
% --------------------------------------------------------------------------
function dfdy = ex2Jac(t,y)
%EX2JAC The Jacobian of the ODE function for Example 2 of the BVP tutorial.
p = 1e-5;
dfdy = [ 0 1
-3*p/(p+t^2)^2 0 ];
% --------------------------------------------------------------------------
function res = ex2bc(ya,yb)
%EX2BC Boundary conditions for Example 2 of the BVP tutorial.
% The boundary conditions are that the solution should agree
% with the values of an analytical solution at both a and b.
p = 1e-5;
yatb = 0.1/sqrt(p + 0.01);
yata = - yatb;
res = [ ya(1) - yata
yb(1) - yatb ];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -