?? bratubvp.m
字號:
function bratubvp
%BRATUBVP Exercise for Example 1 of the BVP tutorial.
% The BVP y'' + exp(y) = 0, y(0) = 0 = y(1) is a standard example
% of a problem with two solutions. It is easy enough to solve, but
% some experimentation with the guess may be necessary to get both.
options = bvpset('stats','on');
solinit = bvpinit(linspace(0,1,5),[0.1 0]);
sol1 = bvp4c(@bratuode,@bratubc,solinit,options);
fprintf('\n');
% Change the initial guess to converge to a different solution.
solinit = bvpinit(linspace(0,1,5),[3 0]);
sol2 = bvp4c(@bratuode,@bratubc,solinit,options);
clf reset
plot(sol1.x,sol1.y(1,:),sol2.x,sol2.y(1,:))
title('Bratu''s equation has two solutions when \lambda = 1.')
xlabel('x')
ylabel('y')
shg
% --------------------------------------------------------------------------
function dydx = bratuode(x,y)
%BRATUODE ODE function for the exercise of Example 1 of the BVP tutorial.
dydx = [ y(2)
-exp(y(1))];
% --------------------------------------------------------------------------
function res = bratubc(ya,yb)
%BRATUBC Boundary conditions for the exercise of Example 1 of the BVP tutorial.
res = [ya(1)
yb(1)];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -