?? decoder.c
字號(hào):
/************************************************************************* COPYRIGHT AND WARRANTY INFORMATION** Copyright 2001, International Telecommunications Union, Geneva** DISCLAIMER OF WARRANTY** These software programs are available to the user without any* license fee or royalty on an "as is" basis. The ITU disclaims* any and all warranties, whether express, implied, or* statutory, including any implied warranties of merchantability* or of fitness for a particular purpose. In no event shall the* contributor or the ITU be liable for any incidental, punitive, or* consequential damages of any kind whatsoever arising from the* use of these programs.** This disclaimer of warranty extends to the user of these programs* and user's customers, employees, agents, transferees, successors,* and assigns.** The ITU does not represent or warrant that the programs furnished* hereunder are free of infringement of any third-party patents.* Commercial implementations of ITU-T Recommendations, including* shareware, may be subject to royalty fees to patent holders.* Information regarding the ITU-T patent policy is available from* the ITU Web site at http://www.itu.int.** THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.*************************************************************************//*! ************************************************************************************* * \file decoder.c * * \brief * Contains functions that implement the "decoders in the encoder" concept for the * rate-distortion optimization with losses. * \date * October 22nd, 2001 * * \author * Main contributors (see contributors.h for copyright, address and * affiliation details) * - Dimitrios Kontopodis <dkonto@eikon.tum.de> ************************************************************************************* */#include <stdlib.h>#include <memory.h>#include "global.h"#include "refbuf.h"#include "rdopt.h"/*! ************************************************************************************* * \brief * decodes one macroblock at one simulated decoder * * \param decoder * The id of the decoder * * \param mode * encoding mode of the MB * * \param ref * reference frame index * * \note * Gives the expected value in the decoder of one MB. This is done based on the * stored reconstructed residue resY[][], the reconstructed values imgY[][] * and the motion vectors. The decoded MB is moved to decY[][]. ************************************************************************************* */void decode_one_macroblock(int decoder, int mode, int ref){ int i,j,block_y,block_x; int ref_inx; int mv[2][BLOCK_MULTIPLE][BLOCK_MULTIPLE]; int resY_tmp[MB_BLOCK_SIZE][MB_BLOCK_SIZE]; int inter = (mode >= MBMODE_INTER16x16 && mode <= MBMODE_INTER4x4 && img->type!=B_IMG); if (img->number==0) { for(i=0;i<MB_BLOCK_SIZE;i++) for(j=0;j<MB_BLOCK_SIZE;j++) decY[decoder][img->pix_y+j][img->pix_x+i]=imgY[img->pix_y+j][img->pix_x+i]; } else { if (mode==MBMODE_COPY) { for(i=0;i<MB_BLOCK_SIZE;i++) for(j=0;j<MB_BLOCK_SIZE;j++) resY_tmp[j][i]=0; /* Set motion vectors to zero */ for (block_y=0; block_y<BLOCK_MULTIPLE; block_y++) for (block_x=0; block_x<BLOCK_MULTIPLE; block_x++) for (i=0;i<2;i++) mv[i][block_y][block_x]=0; } else { /* Copy motion vectors and residues to local arrays mv, resY_tmp, resUV_tmp */ for (block_y=0; block_y<BLOCK_MULTIPLE; block_y++) for (block_x=0; block_x<BLOCK_MULTIPLE; block_x++) for (i=0;i<2;i++) mv[i][block_y][block_x]=tmp_mv[i][img->block_y+block_y][img->block_x+block_x+4]; for(i=0;i<MB_BLOCK_SIZE;i++) for(j=0;j<MB_BLOCK_SIZE;j++) resY_tmp[j][i]=resY[j][i]; } /* Decode Luminance */ if (inter || mode==MBMODE_COPY) { for (block_y=img->block_y ; block_y < img->block_y+BLOCK_MULTIPLE ; block_y++) for (block_x=img->block_x ; block_x < img->block_x+BLOCK_MULTIPLE ; block_x++) { ref_inx = (img->number-ref-1)%img->no_multpred; Get_Reference_Block(decref[decoder][ref_inx], block_y, block_x, mv[0][block_y-img->block_y][block_x-img->block_x], mv[1][block_y-img->block_y][block_x-img->block_x], RefBlock); for (j=0;j<BLOCK_SIZE;j++) for (i=0;i<BLOCK_SIZE;i++) { if (RefBlock[j][i] != UMVPelY_14 (mref[ref_inx], (block_y*4+j)*4+mv[1][block_y-img->block_y][block_x-img->block_x], (block_x*4+i)*4+mv[0][block_y-img->block_y][block_x-img->block_x])) ref_inx = (img->number-ref-1)%img->no_multpred; decY[decoder][block_y*BLOCK_SIZE + j][block_x*BLOCK_SIZE + i] = resY_tmp[(block_y-img->block_y)*BLOCK_SIZE + j] [(block_x-img->block_x)*BLOCK_SIZE + i] + RefBlock[j][i]; } } } else { /* Intra Refresh - Assume no spatial prediction */ for (j=0;j<MB_BLOCK_SIZE;j++) for (i=0;i<MB_BLOCK_SIZE;i++) decY[decoder][img->pix_y + j][img->pix_x + i] = imgY[img->pix_y + j][img->pix_x + i]; } }}/*! ************************************************************************************* * \brief * Finds the reference MB given the decoded reference frame * \note * This is based on the function UnifiedOneForthPix, only it is modified to * be used at the "many decoders in the encoder" RD optimization. In this case * we dont want to keep full upsampled reference frames for all decoders, so * we just upsample when it is necessary. * \param imY * The frame to be upsampled * \param block_y * The row of the block, whose prediction we want to find * \param block_x * The column of the block, whose prediction we want to track * \param mvhor * Motion vector, horizontal part * \param mvver * Motion vector, vertical part * \param out * Output: The prediction for the block (block_y, block_x) ************************************************************************************* */void Get_Reference_Block(byte **imY, int block_y, int block_x, int mvhor, int mvver, byte **out){ int i,j,y,x; y = block_y * BLOCK_SIZE * 4 + mvver; x = block_x * BLOCK_SIZE * 4 + mvhor; for (j=0; j<BLOCK_SIZE; j++) for (i=0; i<BLOCK_SIZE; i++) out[j][i] = Get_Reference_Pixel(imY, max(0,min(img->mvert, y+j*4)), max(0,min(img->mhor, x+i*4)));}/*! ************************************************************************************* * \brief * Finds a pixel (y,x) of the upsampled reference frame * \note * This is based on the function UnifiedOneForthPix, only it is modified to * be used at the "many decoders in the encoder" RD optimization. In this case * we dont want to keep full upsampled reference frames for all decoders, so * we just upsample when it is necessary. ************************************************************************************* */byte Get_Reference_Pixel(byte **imY, int y_pos, int x_pos){ int dx, x; int dy, y; int maxold_x,maxold_y; int result = 0, result1, result2; int pres_x; int pres_y; int tmp_res[6]; static const int COEF[6] = { 1, -5, 20, 20, -5, 1 }; dx = x_pos&3; dy = y_pos&3; x_pos = (x_pos-dx)/4; y_pos = (y_pos-dy)/4; maxold_x = img->width-1; maxold_y = img->height-1; if (dx == 0 && dy == 0) { /* fullpel position */ result = imY[max(0,min(maxold_y,y_pos))][max(0,min(maxold_x,x_pos))]; } else if (dx == 3 && dy == 3) { /* funny position */ result = (imY[max(0,min(maxold_y,y_pos)) ][max(0,min(maxold_x,x_pos)) ]+ imY[max(0,min(maxold_y,y_pos)) ][max(0,min(maxold_x,x_pos+1))]+ imY[max(0,min(maxold_y,y_pos+1))][max(0,min(maxold_x,x_pos+1))]+ imY[max(0,min(maxold_y,y_pos+1))][max(0,min(maxold_x,x_pos)) ]+2)/4; } else { /* other positions */ if (dy == 0) { pres_y = max(0,min(maxold_y,y_pos)); for(x=-2;x<4;x++) { pres_x = max(0,min(maxold_x,x_pos+x)); result += imY[pres_y][pres_x]*COEF[x+2]; } result = max(0, min(255, (result+16)/32));
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -