?? teave式加密.java
字號:
import java.math.*; /** * Tiny Encryption Algorithm. *
* (The following description is from the web page for the C and Assembler source * code at University of Bradford * Yorkshire, England - The Cryptography & Computer Communications Security * Group) The description is used with the permission of the authors, * Dr S J Shepherd and D A G Gillies. *
* The Tiny Encryption Algorithm is one of the fastest and most efficient * cryptographic algorithms in existence. It was developed by David * Wheeler and Roger Needham at the Computer Laboratory of Cambridge * University. It is a Feistel cipher which uses operations from mixed * (orthogonal) algebraic groups - XORs and additions in this case. It * encrypts 64 data bits at a time using a 128-bit key. It seems highly * resistant to differential cryptanalysis, and achieves complete * diffusion (where a one bit difference in the plaintext will cause * approximately 32 bit differences in the ciphertext) after only six * rounds. Performance on a modern desktop computer or workstation is * very impressive. *
* TEA takes 64 bits of data in v[0] and v[1], and 128 bits of key in * k[0] - k[3]. The result is returned in w[0] and w[1]. Returning the * result separately makes implementation of cipher modes other than * Electronic Code Book a little bit easier. *
* TEA can be operated in any of the modes of DES. *
* n is the number of iterations. 32 is ample, 16 is sufficient, as few * as eight should be OK for most applications, especially ones where * the data age quickly (real-time video, for example). The algorithm * achieves good dispersion after six iterations. The iteration count * can be made variable if required. *
* Note this algorithm is optimised for 32-bit CPUs with fast shift * capabilities. It can very easily be ported to assembly language on * most CPUs. *
* delta is chosen to be the Golden ratio ((5/4)1/2 - 1/2 ~ 0.618034) * multiplied by 232. On entry to decipher(), sum is set to be delta * * n. Which way round you call the functions is arbitrary: DK(EK(P)) = * EK(DK(P)) where EK and DK are encryption and decryption under key K * respectively. *
* Translator's notes: *
*
Although the this algorithm is optimised for * 32-bit CPUs with fast shift capabilities Java manages to throw * it all away by not providing unsigned values resulting in the excessive * use of AND's to prevent sign extension on promotion of a byte * to an integer. * *
*
* The following description is taken from the * Mach5 Software cryptography archives at * www.mach5.com/crypto. *
Tiny Encryption Algorithm (TEA)
* TEA is a cryptographic algorithm designed to minimize memory * footprint, and maximize speed. However, the cryptographers from Counterpane Systems have discovered three related-key * attacks on TEA, the best of which requires only 223 chosen plaintexts and one related * key query. The problems arise from the overly simple key schedule. Each TEA key can be * found to have three other equivalent keys, as described in a paper by David Wagner, John Kelsey, and Bruce Schneier. This precludes the * possibility of using TEA as a hash function. Roger Needham and David Wheeler have proposed * extensions to TEA that * counters the above attacks.
* *
* *
Example of use: *
* byte key[] = new BigInteger("39e858f86df9b909a8c87cb8d9ad599", 16).toByteArray();
* TEA t = new TEA(key);
*
* String src = "hello world!";
* System.out.println("input = " + src);
* byte plainSource[] = src.getBytes();
* int enc[] = t.encode(plainSource, plainSource.length);
* System.out.println(t.padding() + " bytes added as padding.");
* byte dec[] = t.decode(enc);
* System.out.println("output = " + new String(dec));
*
* * @author Translated by Michael Lecuyer (mjl@theorem.com) from the C Language. * @version 1.0 Sep 8, 1998 * @since JDK1.1 */ public class TEA { private int _key[]; // The 128 bit key. private byte _keyBytes[]; // original key as found private int _padding; // amount of padding added in byte --> integer conversion. /** * Encodes and decodes "Hello world!" for your personal pleasure. */ public static void main(String args[]) { // A simple test of TEAint. byte key[] = new BigInteger("39e858f86df9b909a8c87cb8d9ad599", 16).toByteArray(); TEAint t = new TEAint(key); String src = "hello world!"; System.out.println("input = [" + src + "]"); // Pad the plaintext with spaces. src = t.padPlaintext(src); byte plainSource[] = src.getBytes(); int enc[] = t.encode(plainSource, plainSource.length); for (int j = 0; j < enc.length; j++) System.out.println(j + " " + Integer.toHexString(enc[j])); // Report on padding, it should be zero since we originally padded the string with spaces. System.out.println(t.padding() + " bytes added as padding."); // Display what the encoding would be in a hex string. String hexStr = t.binToHex(enc); System.out.println("Encoding as Hex string: " + hexStr); byte dec[] = t.decode(enc); System.out.println("output = " + new String(dec)); } /** * Accepts key for enciphering/deciphering. * * @throws ArrayIndexOutOfBoundsException if the key isn't the correct length. * * @param key 128 bit (16 byte) key. */ public TEA(byte key[]) { int klen = key.length; _key = new int[4]; // Incorrect key length throws exception. if (klen != 16) throw new ArrayIndexOutOfBoundsException(this.getClass().getName() + ": Key is not 16 bytes: " + klen); int j, i; for (i = 0, j = 0; j < klen; j += 4, i++) _key[i] = (key[j] << 24 ) | (((key[j+1])&0xff) << 16) | (((key[j+2])&0xff) << 8) | ((key[j+3])&0xff); _keyBytes = key; // save for toString. } public TEA(int key[]) { _key = key; } /** * Representation of TEA class */ public String toString() { String tea = this.getClass().getName(); tea += ": Tiny Encryption Algorithm (TEA) key: " + getHex(_keyBytes); return tea; } /** * Encipher two ints. * Replaces the original contents of the parameters with the results. * The integers are usually created from 8 bytes. * The usual way to collect bytes to the int array is: *
* byte ba[] = { .... };
* int v[] = new int[2];
* v[0] = (ba[j] << 24 ) | (((ba[j+1])&0xff) << 16) | (((ba[j+2])&0xff) << 8) | ((ba[j+3])&0xff);
* v[1] = (ba[j+4] << 24 ) | (((ba[j+5])&0xff) << 16) | (((ba[j+6])&0xff) << 8) | ((ba[j+7])&0xff);
* v = encipher(v);
*
* * @param v two int array as input. * * @return array of two ints, enciphered. */ public int [] encipher(int v[]) { int y=v[0]; int z=v[1]; int sum=0; int delta=0x9E3779B9; int a=_key[0]; int b=_key[1]; int c=_key[2]; int d=_key[3]; int n=32; while(n-- > 0) { sum += delta; y += (z << 4)+a ^ z + sum ^ (z >>> 5) + b; z += (y << 4)+c ^ y+ sum ^ (y >>> 5) + d; } v[0] = y; v[1] = z; return v; } /** * Decipher two ints. * Replaces the original contents of the parameters with the results. * The integers are usually decocted to 8 bytes. * The decoction of the ints to bytes can be done * this way. *
* int x[] = decipher(ins);
* outb[j] = (byte)(x[0] >>> 24);
* outb[j+1] = (byte)(x[0] >>> 16);
* outb[j+2] = (byte)(x[0] >>> 8);
* outb[j+3] = (byte)(x[0]);
* outb[j+4] = (byte)(x[1] >>> 24);
* outb[j+5] = (byte)(x[1] >>> 16);
* outb[j+6] = (byte)(x[1] >>> 8);
* outb[j+7] = (byte)(x[1]);
*
* * @param v int array of 2 * * @return deciphered int array of 2 */ public int [] decipher(int v[]) { int y=v[0]; int z=v[1]; int sum=0xC6EF3720; int delta=0x9E3779B9; int a=_key[0]; int b=_key[1]; int c=_key[2]; int d=_key[3]; int n=32; // sum = delta<<5, in general sum = delta * n while(n-- > 0) { z -= (y << 4)+c ^ y+sum ^ (y >>> 5) + d; y -= (z << 4)+a ^ z+sum ^ (z >>> 5) + b; sum -= delta; } v[0] = y; v[1] = z; return v; } /** * Byte wrapper for encoding. * Converts bytes to ints. * Padding will be added if required. * * @param b incoming byte array * * @param byte count * * @return integer conversion array, possibly with padding. * * @see #padding */ int [] encode(byte b[], int count) { int j ,i; int bLen = count; byte bp[] = b; _padding = bLen % 8; if (_padding != 0) // Add some padding, if necessary. { _padding = 8 - (bLen % 8); bp = new byte[bLen + _padding]; System.arraycopy(b, 0, bp, 0, bLen); bLen = bp.length; } int intCount = bLen / 4; int r[] = new int[2]; int out[] = new int[intCount]; for (i = 0, j = 0; j < bLen; j += 8, i += 2) { // Java's unforgivable lack of unsigneds causes more bit // twiddling than this language really needs. r[0] = (bp[j] << 24 ) | (((bp[j+1])&0xff) << 16) | (((bp[j+2])&0xff) << 8) | ((bp[j+3])&0xff); r[1] = (bp[j+4] << 24 ) | (((bp[j+5])&0xff) << 16) | (((bp[j+6])&0xff) << 8) | ((bp[j+7])&0xff); encipher(r); out[i] = r[0]; out[i+1] = r[1]; } return out; } /** * Report how much padding was done in the last encode. * * @return bytes of padding added */ public int padding() { return _padding; } /** * Convert a byte array to ints and then decode. * There may be some padding at the end of the byte array from * the previous encode operation. * * @param b bytes to decode * @param count number of bytes in the array to decode * * @return byte array of decoded bytes. */ public byte [] decode(byte b[], int count) { int i, j; int intCount = count / 4; int ini[] = new int[intCount]; for (i = 0, j = 0; i < intCount; i += 2, j += 8) { ini[i] = (b[j] << 24 ) | (((b[j+1])&0xff) << 16) | (((b[j+2])&0xff) << 8) | ((b[j+3])&0xff); ini[i+1] = (b[j+4] << 24 ) | (((b[j+5])&0xff) << 16) | (((b[j+6])&0xff) << 8) | ((b[j+7])&0xff); } return decode(ini); } /** * Decode an integer array. * There may be some padding at the end of the byte array from * the previous encode operation. * * @param b bytes to decode * @param count number of bytes in the array to decode * * @return byte array of decoded bytes. */ public byte [] decode(int b[]) { // create the large number and start stripping ints out, two at a time. int intCount = b.length; byte outb[] = new byte[intCount * 4]; int tmp[] = new int[2]; // decipher all the ints. int i, j; for (j = 0, i = 0; i < intCount; i += 2, j += 8) { tmp[0] = b[i]; tmp[1] = b[i+1]; decipher(tmp); outb[j] = (byte)(tmp[0] >>> 24); outb[j+1] = (byte)(tmp[0] >>> 16); outb[j+2] = (byte)(tmp[0] >>> 8); outb[j+3] = (byte)(tmp[0]); outb[j+4] = (byte)(tmp[1] >>> 24); outb[j+5] = (byte)(tmp[1] >>> 16); outb[j+6] = (byte)(tmp[1] >>> 8); outb[j+7] = (byte)(tmp[1]); } return outb; } /** * Convert an array of ints into a hex string. * * @param enc Array of integers. * @return String hexadecimal representation of the integer array. * @throws ArrayIndexOutOfBoundsException if the array doesn't contain pairs of integers. */ public String binToHex(int enc[]) throws ArrayIndexOutOfBoundsException { // The number of ints should always be a multiple of two as required by TEA (64 bits). if ((enc.length % 2) == 1) throw new ArrayIndexOutOfBoundsException("Odd number of ints found: " + enc.length); StringBuffer sb = new StringBuffer(); byte outb[] = new byte[8]; int tmp[] = new int[2]; int counter = enc.length / 2; for (int i = 0; i < enc.length; i += 2) { outb[0] = (byte)(enc[i] >>> 24); outb[1] = (byte)(enc[i] >>> 16); outb[2] = (byte)(enc[i] >>> 8); outb[3] = (byte)(enc[i]); outb[4] = (byte)(enc[i+1] >>> 24); outb[5] = (byte)(enc[i+1] >>> 16); outb[6] = (byte)(enc[i+1] >>> 8); outb[7] = (byte)(enc[i+1]); sb.append(getHex(outb)); } return sb.toString(); } /** * Display bytes in HEX. * @param b bytes to display. * @return string representation of the bytes. */ public String getHex(byte b[]) { StringBuffer r = new StringBuffer(); final char hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };; for (int i = 0; i < b.length; i++) { int c = ((b[i]) >>> 4) & 0xf; r.append(hex[c]); c = ((int)b[i] & 0xf); r.append(hex[c]); } return r.toString(); } /** * Pad a string out to the proper length with the given character. * * @param str Plain text string. * @param pc Padding character. */ public String padPlaintext(String str, char pc) { StringBuffer sb = new StringBuffer(str); int padding = sb.length() % 9; for (int i = 0; i < padding; i++) sb.append(pc); return sb.toString(); } /** * Pad a string out to the proper length with spaces. * * @param str Plain text string. */ public String padPlaintext(String str) { return padPlaintext(str, ' '); } }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -