?? inithmm.m
字號:
function hmm = inithmm(samples, M)
K = length(samples); %語音樣本數
N = length(M); %狀態數
hmm.N = N;
hmm.M = M;
% 初始概率矩陣
hmm.init = zeros(N,1);
hmm.init(1) = 1;
% 轉移概率矩陣
hmm.trans=zeros(N,N);
for i=1:N-1
hmm.trans(i,i) = 0.5;
hmm.trans(i,i+1) = 0.5;
end
hmm.trans(N,N) = 1;
% 概率密度函數的初始聚類
% 平均分段
for k = 1:K
T = size(samples(k).data,1);
samples(k).segment=floor([1:T/N:T T+1]);
end
%對屬于每個狀態的向量進行K均值聚類,得到連續混合正態分布
for i = 1:N
%把相同聚類和相同狀態的向量組合到一個向量中
vector = [];
for k = 1:K
seg1 = samples(k).segment(i);
seg2 = samples(k).segment(i+1)-1;
vector = [vector ; samples(k).data(seg1:seg2,:)];
end
mix(i) = getmix(vector, M(i));
end
hmm.mix = mix;
function mix = getmix(vector, M)
[mean esq nn] = kmeans(vector,M);
% 計算每個聚類的標準差, 對角陣, 只保存對角線上的元素
for j = 1:M
ind = find(j==nn);
tmp = vector(ind,:);
var(j,:) = std(tmp);
end
% 計算每個聚類中的元素數, 歸一化為各pdf的權重
weight = zeros(M,1);
for j = 1:M
weight(j) = sum(find(j==nn));
end
weight = weight/sum(weight);
% 保存結果
mix.M = M;
mix.mean = mean; % M*SIZE
mix.var = var.^2; % M*SIZE
mix.weight = weight; % M*1
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -