亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo5.m

?? 最新時頻分析處理軟件
?? M
字號:
%TFDEMO5 Affine class time-frequency distributions.%	Time-Frequency Toolbox demonstration.%%	See also TFDEMO.%	O. Lemoine - July 1996. %	Copyright (c) CNRS.clc; zoom on; clf; echo on;% The Affine class : presentation%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% This class gathers all the quadratic time-frequency representations % which are covariant by translation in time and dilation. The WVD is% an element of the affine class, provided that we introduce an % arbitrary non-zero frequency nu0, and identify the scale with the % inverse of the frequency : a=nu0/nu.% The choice of an element in the affine class can be reduced to the % choice of an affine correlation kernel PI(t,nu). When PI is a % two-dimensional low-pass function, it plays the role of an affine% smoothing function which tries to reduce the interferences generated % by the WVD.%% The scalogram %"""""""""""""""%  A first example of affine distribution is given by the scalogram,% which is the squared modulus of the wavelet transform. It is the affine% counterpart of the spectrogram. As illustrated in the following example,% the tradeoff between time and frequency resolutions encountered with the% spectrogram is also present with the scalogram.%  We analyze a signal composed of two gaussian atoms, one with a low % central frequency, and the other with a high one, with the scalogram % (Morlet wavelet) :sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);clf; tfrscalo(sig);% The result obtained brings to the fore dependency, with regard to the % frequency, of the smoothing applied to the WVD, and consequently of the% resolutions in time and frequency.%% Press any key to continue... pause; clc; clf; set(gca,'visible','off'); % The affine smoothed pseudo Wigner distribution (ASPWVD)%"""""""""""""""""""""""""""""""""""""""""""""""""""""""""%  One way to overcome the tradeoff between time and frequency resolutions% of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing% function which is separable in time and frequency. The resulting% distribution is called the affine smoothed pseudo WVD. It allows a % flexible choice of time and scale resolutions in an independent manner % through the choice of two windows g and h. %%  As for the SPWVD, the ASPWVD allows a continuous passage from the % scalogram to the WVD, under the condition that the smoothing functions % g and h are gaussian. The time-bandwidth product then goes from 1 % (scalogram) to 0 (WVD), with an independent control of the time and % frequency resolutions. This is illustrated in the following example :	load movsc2wvpausemovie(M,5);% Here again, the WVD gives the best resolutions (in time and in frequency),% but presents the most important interferences, whereas the scalogram gives% the worst resolutions, but with nearly no interferences ; and the affine% smoothed-pseudo WVD allows to choose the best compromise between these two% extremes.%% Press any key to continue... pause; clc; close% The localized bi-frequency kernel (or affine Wigner) distributions%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%  A useful subclass of the affine class consists in characterization% functions which are perfectly localized on power laws or logarithmic laws% in their bi-frequency representation. The corresponding time-scale % distributions are known as the localized bi-frequency kernel distributions.% % The Bertrand distribution%"""""""""""""""""""""""""""%  If we further impose to these distributions the a priori requirements of% time localization and unitarity, we obtain the Bertrand distribution. This% distribution satisfies many properties, and is the only localized% bi-frequency kernel distribution which localizes perfectly the hyperbolic% group delay signals. To illustrate this property, consider the signal % obtained using the file gdpower.m (taken for k=0), and analyze it with % the file tfrbert.m :sig=gdpower(128);tfrbert(sig,1:128,0.01,0.22,128,1);% Note that the distribution obtained is well localized on the hyperbolic% group delay, but not perfectly : this comes from the fact that the file% tfrbert.m works only on a subpart of the spectrum, between two bounds fmin% and fmax.%% Press any key to continue... pause; clc;% The D-Flandrin distribution %"""""""""""""""""""""""""""""%  If we now look for a localized bi-frequency kernel distribution which is% real, localized in time and which validates the time-marginal property, % we obtain the D-Flandrin distribution. It is the only localized % bi-frequency kernel distribution which localizes perfectly signals having % a group delay in 1/sqrt(nu). This can be illustrated as following :sig=gdpower(128,1/2);tfrdfla(sig,1:128,0.01,0.22,128,1);% Here again, the distribution is almost perfectly localized.%% Press any key to continue... pause; clc;% The active Unterberger distribution%"""""""""""""""""""""""""""""""""""""%  Finally, the only localized bi-frequency kernel distribution which% localizes perfectly signals having a group delay in 1/nu^2 is the active% Unterberger distribution :sig=gdpower(128,-1);tfrunter(sig,1:128,'A',0.01,0.22,172,1);% Press any key to continue... pause; clc;% Relation with the ambiguity domain%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%  When the signal under analysis can not be considered as narrow-band% (i.e. when its bandwidth B is not negligible compared to its central% frequency nu0), the narrow-band ambiguity function is no longer appropriate% since the Doppler effect can not be approximated as a frequency-shift. We% then consider a wide-band ambiguity function (WAF). It corresponds to % the wavelet transform of the signal x, whose mother wavelet is the signal% x itself. It is then an affine correlation function, which measure the % similarity between the signal and its translated (in time) and dilated % versions. To see how it behaves on a practical example, let us consider an% Altes signal :	sig=altes(128,0.1,0.45);clf; ambifuwb(sig);% The WAF is maximum at the origin of the ambiguity plane.  %% Press any key to continue... pause; clc  % Interference structure%~~~~~~~~~~~~~~~~~~~~~~~~%  The interference structure of the localized bi-frequency kernel % distributions can be determined thanks to the following geometric % argument : two points (t1,nu1) and (t2,nu2) belonging to the trajectory % on which a distribution is localized interfere on a third point % (ti,nui) which is necessarily located on the same trajectory.%  To illustrate this interference geometry, let us consider the case of a% signal with a sinusoidal frequency modulation :[sig,ifl]=fmsin(128);% The file plotsid.m allows one to construct the interferences of an affine% Wigner distribution perfectly localized on a power-law group-delay% (specifying k), for a given instantaneous frequency law (or the% superposition of different instantaneous frequency laws). For example, if% we consider the case of the Bertrand distribution (k=0),plotsid(1:128,ifl,0);% we obtain an interference structure completely different from the one% obtained for the Wigner-Ville distribution (k=2) :%% press any key to continue... pause;plotsid(1:128,ifl,2);% For the active Unterberger distribution (k=-1), the result is the% following : %% press any key to continue... pause;plotsid(1:128,ifl,-1); % Press any key to continue... pause; clc% The pseudo affine Wigner distributions%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%   The affine Wigner distributions show great potential as flexible% tools for time-varying spectral analysis. However, as some distributions of% the Cohen's class, they present two major practical limitations : first the% entire signal enters into the calculation of these distributions at every% point (t,nu), and second, due to their nonlinearity, interference% components arise between each pair of signal components. To overcome these% limitations, a set of (smoothed) pseudo affine Wigner distributions has% been introduced.%  Here are two examples of such distributions, analyzed on a real % echolocation signal from a bat :load bat; N=128;sig=hilbert(bat(801:7:800+N*7)');% The affine smoothed pseudo Wigner distribution %------------------------------------------------figure(1); tfrwv(sig); figure(2); tfrspaw(sig,1:N,2,24,0,0.1,0.4,N,1); % On the left, the WVD presents interference terms because of the% non-linearity of the frequency modulation. On the right, the affine% frequency smoothing operated by the affine smoothed pseudo Wigner% distribution almost perfectly suppressed the interference terms.%% Press any key to continue... pause; clc% The pseudo Bertrand distribution%----------------------------------figure(1); tfrbert(sig,1:N,0.1,0.4,N,1);figure(2); tfrspaw(sig,1:N,0,32,0,0.1,0.4,N,1); % The first plot represents the Bertrand distribution. The approximate% hyperbolic group delay law of the bat signal explains the good result% obtained with this distribution (compared to the WVD). However, it% remains some interference terms, which are almost perfectly canceled% on the second plot (pseudo Bertrand distribution).%% Press any key to end this demonstrationpause; close;echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人精品在线视频观看| 91麻豆蜜桃一区二区三区| 国产不卡免费视频| 欧美日韩另类一区| 国产精品亲子乱子伦xxxx裸| 日本vs亚洲vs韩国一区三区二区| 国产精品影视天天线| 欧美精品在线一区二区| 亚洲天天做日日做天天谢日日欢 | 欧美日韩一区二区三区四区| 精品国产3级a| 一区二区三区美女视频| 国产iv一区二区三区| 欧美一区二区久久| 午夜精品福利一区二区蜜股av| 成人黄色在线看| 国产蜜臀97一区二区三区| 久久99精品久久久| 欧美一级片在线观看| 激情综合色综合久久综合| 欧美日韩色综合| 亚洲一区在线视频观看| 91麻豆免费在线观看| 国产精品高潮呻吟久久| 成人激情图片网| 欧美经典三级视频一区二区三区| 九九国产精品视频| 日韩一区和二区| 男女激情视频一区| 欧美一卡二卡三卡| 日本欧美一区二区三区乱码| 欧美日韩国产一区| 日韩影院精彩在线| 91精品国产日韩91久久久久久| 亚洲综合在线第一页| 在线观看av一区二区| 一区二区三区蜜桃| 欧美日韩成人综合| 亚洲成a人v欧美综合天堂 | 欧美日韩精品三区| 亚洲一区二区三区四区不卡| 欧美在线观看你懂的| 亚洲风情在线资源站| 欧美美女视频在线观看| 石原莉奈一区二区三区在线观看| 在线播放91灌醉迷j高跟美女 | 91亚洲国产成人精品一区二区三 | 久久嫩草精品久久久精品| 琪琪久久久久日韩精品| 日韩欧美国产wwwww| 国产麻豆91精品| 亚洲国产精品高清| 91捆绑美女网站| 午夜精品久久久久久久| 欧美一区二区美女| 国产精品88av| 亚洲综合男人的天堂| 日韩欧美国产麻豆| 国产电影一区在线| 一区二区成人在线视频| 在线播放欧美女士性生活| 国产综合色视频| 亚洲欧美在线另类| 7777精品伊人久久久大香线蕉完整版 | 图片区小说区区亚洲影院| 欧美女孩性生活视频| 久久福利视频一区二区| 国产精品天干天干在观线| 欧美性三三影院| 狠狠色伊人亚洲综合成人| 国产精品盗摄一区二区三区| 欧美日韩免费在线视频| 国产一二精品视频| 樱桃视频在线观看一区| 欧美电视剧在线观看完整版| 色综合色综合色综合色综合色综合 | 一二三四区精品视频| 日韩欧美一区在线| 99久久国产综合精品色伊| 婷婷综合五月天| 国产精品欧美经典| 欧美精品电影在线播放| 成人成人成人在线视频| 美女任你摸久久| 亚洲精品你懂的| 久久久综合精品| 欧美电影一区二区| 色诱亚洲精品久久久久久| 国产一区二区调教| 首页国产丝袜综合| 国产精品不卡视频| 精品国精品自拍自在线| 欧美精品高清视频| 97久久超碰国产精品| 精品一区二区三区蜜桃| 一区二区三区久久久| 国产精品激情偷乱一区二区∴| 欧美一个色资源| 在线精品视频一区二区三四| 不卡一区二区中文字幕| 久久精品二区亚洲w码| 天天爽夜夜爽夜夜爽精品视频 | 欧美不卡一区二区三区四区| 91老司机福利 在线| 国产91高潮流白浆在线麻豆| 精品一区二区三区久久| 轻轻草成人在线| 亚洲123区在线观看| 一区二区三区波多野结衣在线观看| 国产午夜久久久久| 欧美xxxx在线观看| 日韩精品资源二区在线| 91精品欧美综合在线观看最新 | 99re66热这里只有精品3直播| 丁香五精品蜜臀久久久久99网站| 久久99精品久久久久| 久久99九九99精品| 国产一区二区免费视频| 久久精品国产亚洲aⅴ | 亚洲精品在线免费播放| 日韩精品一区二区三区在线 | 日韩一区在线播放| 国产偷国产偷精品高清尤物 | 精品成人在线观看| 26uuu国产一区二区三区| 精品欧美一区二区在线观看| 精品国免费一区二区三区| 国产日产欧美一区二区视频| 国产欧美一二三区| 亚洲天堂免费在线观看视频| 色爱区综合激月婷婷| 成人午夜大片免费观看| 成人免费看黄yyy456| 成人午夜电影久久影院| 97久久超碰精品国产| 欧美日韩一级视频| 欧美一级片免费看| 日韩欧美一区在线| 久久综合久久综合亚洲| 国产精品国产三级国产aⅴ原创| 亚洲欧美另类在线| 午夜激情久久久| 国产精品一卡二| 91麻豆蜜桃一区二区三区| 欧美日韩亚洲综合在线 | 91精品国产综合久久福利| 日韩欧美一区中文| 国产精品久久久爽爽爽麻豆色哟哟| 一区二区三区欧美日| 国产精品国产自产拍高清av王其 | 国产精品88av| 波多野结衣中文一区| 在线精品视频免费观看| 欧美v日韩v国产v| 国产精品视频麻豆| 亚洲国产另类av| 国产99久久久国产精品潘金网站| 99久久99久久免费精品蜜臀| 欧美美女bb生活片| 国产三级久久久| 三级久久三级久久| 成人精品一区二区三区四区| 欧美视频一区二区三区在线观看| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 国产女同性恋一区二区| 亚洲成人av中文| 成人h动漫精品一区二| 欧美一卡二卡三卡四卡| 亚洲女厕所小便bbb| 国产一区二区在线看| 精品视频1区2区3区| 综合中文字幕亚洲| 国产在线精品一区在线观看麻豆| 日本久久一区二区| 国产午夜精品久久久久久久| 日本vs亚洲vs韩国一区三区| 一本大道久久a久久精品综合| 久久久久久免费毛片精品| 日韩国产精品久久久久久亚洲| av不卡在线观看| 国产欧美久久久精品影院| 蜜臀久久99精品久久久久宅男| 在线视频国内一区二区| 中文字幕一区二区三区视频| 国产精品一区免费视频| 日韩一区二区三区四区五区六区 | 国产精品久久久久久户外露出| 欧美aaaaa成人免费观看视频| 日本精品一区二区三区四区的功能| 国产欧美一区二区精品婷婷| 麻豆国产一区二区| 欧美一区二区精品在线| 亚洲成a人v欧美综合天堂下载| 色综合久久88色综合天天6 | 日韩国产欧美在线播放| 99视频在线精品| 国产网红主播福利一区二区| 国产剧情一区二区| 亚洲精品在线观| 国产精品亚洲一区二区三区妖精|