?? qfdes.c
字號(hào):
0x08020020, 0x08000000, 0x00020000, 0x08000820,
0x00000000, 0x08020820, 0x00020020, 0x08000020,
0x08020000, 0x08000800, 0x08000820, 0x00000000,
0x08020820, 0x00020800, 0x00020800, 0x00000820,
0x00000820, 0x00020020, 0x08000000, 0x08020800
};
#define INITIAL_PERMUTATION(t, regL, regR) \
INITIAL_PERMUTATION_AUX(t[0], t[1], regL, regR)
#define FINAL_PERMUTATION(regR, regL, t) \
FINAL_PERMUTATION_AUX(regR, regL, t[0], t[1])
#define PC1(k, regC, regD) \
PC1_AUX(k[0], k[1], regC, regD)
#define PC2(regC, regD, k) \
PC2_AUX(regC, regD, k[0], k[1])
unsigned char G_padChar = (char) 0; /* Default pad charcater */
static Word ROTATE_LEFT(Word x)
{
Word a;
a = (x & 0x80000000) >> 27;
return (x << 1) | a;
}
static Word ROTATE_RIGHT(Word x)
{
Word a;
a = x & 0x00000010;
return (x >> 1) | (a << 27);
}
/*
** The S Box transformations and the permutation P are combined in the vectors
** s_p0 - s_p7. Permutation E and the MOD 2 addition with the intermediate key
** are then done "inline" on each round. The intermediate key is already in a
** a 8x6bit form because of the modified permuation PC2 used.
*/
#if !defined(WORDS_BIGENDIAN)
#define DES(t, ik) \
{ \
register Word l, r, reg32, round; \
register unsigned char *bb; \
INITIAL_PERMUTATION(t, l, r); \
for(bb = (unsigned char *) ik, round = 0x8000; round; bb += 8, round >>= 1) { \
register Word w = (r << 1) | (r >> 31); \
reg32 = s_p7[( w & 0x3f) ^ bb[4]]; \
reg32 |= s_p6[((w >>= 4) & 0x3f) ^ bb[5]]; \
reg32 |= s_p5[((w >>= 4) & 0x3f) ^ bb[6]]; \
reg32 |= s_p4[((w >>= 4) & 0x3f) ^ bb[7]]; \
reg32 |= s_p3[((w >>= 4) & 0x3f) ^ bb[0]]; \
reg32 |= s_p2[((w >>= 4) & 0x3f) ^ bb[1]]; \
reg32 |= s_p1[((w >> 4) & 0x3f) ^ bb[2]]; \
reg32 |= s_p0[(((r & 0x1) << 5) | ((r & 0xf8000000) >> 27)) ^ bb[3]]; \
reg32 ^= l; \
l = r; \
r = reg32; \
} \
FINAL_PERMUTATION(r, l, t); \
}
#define MAKE_LITTLE_ENDIAN(t, s) \
{ \
register unsigned int z, l = s/4; \
register Word *tp = (Word *) t; \
for(z = 0; z < l; ++z) tp[z] = htonl(tp[z]); \
}
#else /* WORDS_BIGENDIAN */
#define DES(t, ik) \
{ \
register Word l, r, reg32, round; \
register unsigned char *bb; \
INITIAL_PERMUTATION(t, l, r); \
for(bb = (unsigned char *) ik, round = 0x8000; round; bb += 8, round >>= 1) { \
register Word w = (r << 1) | (r >> 31); \
reg32 = s_p7[( w & 0x3f) ^ bb[7]]; \
reg32 |= s_p6[((w >>= 4) & 0x3f) ^ bb[6]]; \
reg32 |= s_p5[((w >>= 4) & 0x3f) ^ bb[5]]; \
reg32 |= s_p4[((w >>= 4) & 0x3f) ^ bb[4]]; \
reg32 |= s_p3[((w >>= 4) & 0x3f) ^ bb[3]]; \
reg32 |= s_p2[((w >>= 4) & 0x3f) ^ bb[2]]; \
reg32 |= s_p1[((w >> 4) & 0x3f) ^ bb[1]]; \
reg32 |= s_p0[(((r & 0x1) << 5) | ((r & 0xf8000000) >> 27)) ^ bb[0]]; \
reg32 ^= l; \
l = r; \
r = reg32; \
} \
FINAL_PERMUTATION(r, l, t); \
}
#endif /* WORDS_BIGENDIAN */
int
qfDES(unsigned char *key,
unsigned char *data,
unsigned int size,
const QFDES_what what,
const QFDES_mode mode,
unsigned char *initVec)
{
/* Store some info to optimise for multiple calls ... */
static unsigned char desKey[8], desKeys[128];
static Word *oldKey = (Word *) desKey,
*keys = (Word *) desKeys;
static QFDES_what oldWhat;
static QFDES_mode oldMode;
unsigned char b0[8], b1[8]; /* feedback blocks */
Word *newKey = (Word *) key, /* key from user */
*text, /* text to be [en|de]crypted */
*cb = (Word *) b0, /* the chained block in CBC mode */
*cb1 = (Word *) b1; /* a copy for use when decrypting */
#if !defined(WORDS_BIGENDIAN)
unsigned int origSize = size;
MAKE_LITTLE_ENDIAN(key, 8);
MAKE_LITTLE_ENDIAN(data, origSize);
#endif
/*
** Check new key against old key
** and set up intermediate keys.
*/
if (newKey[0] != oldKey[0] || newKey[1] != oldKey[1]) {
Word c, d; /* C and D registers */
oldKey[0] = newKey[0]; oldKey[1] = newKey[1];
oldWhat = what;
oldMode = mode;
PC1(newKey, c, d);
if ((what == qfDES_encrypt) || (mode == qfDES_cfb) || (mode == qfDES_ofb)) {
int z;
Word r;
Word *k = keys;
Word rol[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
for(z = 0; z < 16; z++, k += 2) {
for (r = 0; r < rol[z]; r++) {
c = ROTATE_LEFT(c);
d = ROTATE_LEFT(d);
}
PC2(c, d, k);
}
} else {
int z;
Word r;
Word *k = keys;
Word ror[16] = {0, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
for(z = 0; z < 16; z++, k += 2) {
r = 0;
while (ror[z] > r) {
r++;
c = ROTATE_RIGHT(c);
d = ROTATE_RIGHT(d);
}
PC2(c, d, k);
}
}
} else if ((what != oldWhat) && ((mode == qfDES_ecb) || (mode == qfDES_cbc))) {
/*
** Same key but different direction.
** Reverse intermediate key sequence (ECB and CBC).
*/
Word *ik1, *ik2, ik3[2];
for(ik1 = keys, ik2 = &(keys[30]); ik1 < ik2; ik1 += 2, ik2 -= 2) {
ik3[0] = ik1[0]; ik3[1] = ik1[1];
ik1[0] = ik2[0]; ik1[1] = ik2[1];
ik2[0] = ik3[0]; ik2[1] = ik3[1];
}
oldWhat = what;
}
/* Set up initilaisation vector */
if (mode != qfDES_ecb) {
if (initVec) {
{ cb[0] = ((Word *) initVec)[0]; cb[1] = ((Word *) initVec)[1]; }
} else {
cb[0] = 0;
cb[1] = 0;
}
#if !defined(WORDS_BIGENDIAN)
MAKE_LITTLE_ENDIAN(cb, 8);
#endif
}
/*
** Lots of gotos and code duplication follow (arrgh) but it speeds
** it up a wee bit!
** What would be more useful is looking more carefully at the DES
** permutations to produce more efficient versions of the macros
** of the "auto-generated" versions used in qfDES-aux.c.
*/
size >>= 3; /* this is always a multpile of 8 */
if (what == qfDES_encrypt) {
switch ((int) mode) {
case ((int) qfDES_ecb): goto _ECB_;
case ((int) qfDES_cbc): goto _CBC_encrypt_;
case ((int) qfDES_cfb): goto _CFB_encrypt_;
case ((int) qfDES_ofb): goto _OFB_;
}
}
else {
switch ((int) mode) {
case ((int) qfDES_ecb): goto _ECB_;
case ((int) qfDES_cbc): goto _CBC_decrypt_;
case ((int) qfDES_cfb): goto _CFB_decrypt_;
case ((int) qfDES_ofb): goto _OFB_;
}
}
_ECB_:
/* ECB */
for(text = (Word *) data; size; --size, text += 2)
{ DES(text, keys); }
goto _exit_qfDES_;
_CBC_encrypt_:
/* CBC Encryption */
for(text = (Word *) data; size; --size, text += 2) {
/* chaining block */
text[0] ^= cb[0]; text[1] ^= cb[1];
DES(text, keys);
/* set up chaining block for next round */
cb[0] = text[0]; cb[1] = text[1];
}
goto _initVec_;
_CBC_decrypt_:
/* CBC Decryption */
for(text = (Word *) data; size; --size, text += 2) {
/* set up chaining block */
/*
** The decryption is done in place so I need
** to copy this text block for the next round.
*/
cb1[0] = text[0]; cb1[1] = text[1];
DES(text, keys);
/* chaining block for next round */
text[0] ^= cb[0]; text[1] ^= cb[1];
/*
** Copy back the saved encrypted text - this makes
** CBC decryption slower than CBC encryption.
*/
cb[0] = cb1[0]; cb[1] = cb1[1];
}
goto _initVec_;
_CFB_encrypt_:
/* CFB Encryption */
for(text = (Word *) data; size; --size, text += 2) {
/* use cb as the feedback block */
DES(cb, keys);
text[0] ^= cb[0]; text[1] ^= cb[1];
/* set up feedback block for next round */
cb[0] = text[0]; cb[1] = text[1];
}
goto _initVec_;
_CFB_decrypt_:
/* CFB Decryption */
for(text = (Word *) data; size; --size, text += 2) {
/* set up feedback block */
/*
** The decryption is done in place so I need
** to copy this text block for the next round.
*/
cb1[0] = text[0]; cb1[1] = text[1];
/* use cb as the feedback block */
DES(cb, keys);
text[0] ^= cb[0]; text[1] ^= cb[1];
/* set up feedback block for next round */
cb[0] = cb1[0]; cb[1] = cb1[1];
}
goto _initVec_;
_OFB_:
/* OFB */
for(text = (Word *) data; size; --size, text += 2) {
/* use cb as the feed back block */
DES(cb, keys);
text[0] ^= cb[0]; text[1] ^= cb[1];
}
_initVec_:
/*
** Copy the final chained block back to initVec (CBC, CFB and OFB).
** This allows the [en|de]cryption of large amounts of data in small
** chunks.
*/
if (initVec) {
((Word *) initVec)[0] = cb[0];
((Word *) initVec)[1] = cb[1];
#if !defined(WORDS_BIGENDIAN)
MAKE_LITTLE_ENDIAN(initVec, 8);
#endif
}
_exit_qfDES_:
#if !defined(WORDS_BIGENDIAN)
MAKE_LITTLE_ENDIAN(key, 8);
MAKE_LITTLE_ENDIAN(data, origSize);
#endif
return 0;
}
/*
** This function sets bit 8 of each byte to odd or even parity as requested.
** It is assumed that the right-most bit of each byte is the parity bit.
** Although this is really only used by the two key generation functions below,
** it may be useful to someone.
*/
void qfDES_setParity(unsigned char *ptr, unsigned int size, const QFDES_parity parity)
{
unsigned int i, mask, bits;
for(i = 0; i < size; ++i, ++ptr) {
for(mask = 0x80, bits = 0; mask > 0x01; mask >>= 1)
if (((unsigned int) *ptr) & mask) ++bits;
*ptr |= bits % 2 == (unsigned int) parity ? 0x00 : 0x01;
}
}
unsigned int qfDES_checkParity(unsigned char *ptr, unsigned int size, const QFDES_parity parity)
{
unsigned int i, mask, bits, parityBit, parityErrors = 0;
for(i = 0; i < size; ++i, ++ptr) {
for(mask = 0x80, bits = 0; mask > 0x01; mask >>= 1)
if (((unsigned int) *ptr) & mask) ++bits;
parityBit = bits % 2 == (unsigned int) parity ? 0 : 1;
if ((((unsigned int) *ptr) & 0x1) != parityBit)
++parityErrors;
}
return parityErrors;
}
static
unsigned char weakKeys[18][8] =
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
{0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe},
{0x1f, 0x1f, 0x1f, 0x1f, 0x0e, 0x0e, 0x0e, 0x0e},
{0xe0, 0xe0, 0xe0, 0xe0, 0xf1, 0xf1, 0xf1, 0xf1},
{0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe},
{0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01},
{0x1f, 0xe0, 0x1f, 0xe0, 0x0e, 0xf1, 0x0e, 0xf1},
{0xe0, 0x1f, 0xe0, 0x1f, 0xf1, 0x0e, 0xf1, 0x0e},
{0x01, 0xe0, 0x01, 0xe0, 0x01, 0xf1, 0x01, 0xf1},
{0xe0, 0x01, 0xe0, 0x01, 0xf1, 0x01, 0xf1, 0x01},
{0x1f, 0xfe, 0x1f, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe},
{0xfe, 0x1f, 0xfe, 0x1f, 0xfe, 0x0e, 0xfe, 0x0e},
{0x01, 0x1f, 0x01, 0x1f, 0x01, 0x0e, 0x01, 0x0e},
{0x1f, 0x01, 0x1f, 0x01, 0x0e, 0x01, 0x0e, 0x01},
{0xe0, 0xfe, 0xe0, 0xfe, 0xf1, 0xfe, 0xf1, 0xfe},
{0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf1, 0xfe, 0xf1}};
/*
** Although this is really only used by the key generation function below,
** it may be handy to someone.
*/
int qfDES_checkWeakKeys(unsigned char *key)
{
unsigned char *bp;
int i;
for(bp = weakKeys[i = 0]; i < 18; bp = weakKeys[++i])
if (memcmp((void *) key, (void *) bp, 8) == 0) return -1;
return 0;
}
/*
** The following function attempts to genreate a random key or IV.
** It relies on the randomness of the of the random(3) function. Although
** it is probably not particularly fast, keys and IV will most probably be
** generated off-line so it does not matter too much.
*/
unsigned char *qfDES_generate(const QFDES_generate what)
{
static
unsigned char buffer[8];
static
int flag = 0;
unsigned char *bp;
long mask = what == qfDES_key ? 0xfe : 0xff;
/* Set up a seed - 42 is the answer ... */
if (!flag) {
lbl_srandom((int) (getpid() * 42) ^ (int) time((time_t *) 0));
flag = 1;
}
do {
for(bp = buffer; bp <= &(buffer[7]); *bp++ = (unsigned char) (lbl_random() & mask));
if (what == qfDES_key)
qfDES_setParity(buffer, 8, qfDES_odd);
} while(what == qfDES_key ? qfDES_checkWeakKeys(buffer) : 0);
return buffer;
}
unsigned char
qfDES_setPad(unsigned char pad)
{
unsigned char b = G_padChar; G_padChar = pad; return b;
}
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -