?? kpca-class.rd
字號(hào):
\name{kpca-class}\docType{class}\alias{kpca-class}\alias{eig}\alias{pcv}\alias{rotated}\alias{eig,kpca-method}\alias{kernelf,kpca-method}\alias{pcv,kpca-method}\alias{rotated,kpca-method}\alias{xmatrix,kpca-method}\title{Class "kpca"}\description{ The Kernel Principal Components Analysis class}\section{Objects objects of class "kpca"}{Objects can be created by calls of the form \code{new("kpca", ...)}. or by calling the \code{kpca} function.}\section{Slots}{ \describe{ \item{\code{pcv}:}{Object of class \code{"matrix"} containing the principal component vectors } \item{\code{eig}:}{Object of class \code{"vector"} containing the coresponding eigenvalues} \item{\code{rotated}:}{Object of class \code{"matrix"} containing the projection of the data on the principal components} \item{\code{kernelf}:}{Object of class \code{"function"} containing the kernel function used} \item{\code{kpar}:}{Object of class \code{"list"} containing the kernel parameters used } \item{\code{xmatrix}:}{Object of class \code{"matrix"} conatining the data matrix used } \item{\code{kcall}:}{Object of class \code{"ANY"} containing the function call } \item{\code{n.action}:}{Object of class \code{"ANY"} containg the action performed on NA } }}\section{Methods}{ \describe{ \item{eig}{\code{signature(object = "kpca")}: returns the eigenvalues } \item{kcall}{\code{signature(object = "kpca")}: returns the performed call} \item{kernelf}{\code{signature(object = "kpca")}: returns the used kernel function} \item{pcv}{\code{signature(object = "kpca")}: returns the principal component vectors } \item{predict}{\code{signature(object = "kpca")}: embeeds new data } \item{rotated}{\code{signature(object = "kpca")}: returns the projected data} \item{xmatrix}{\code{signature(object = "kpca")}: returns the used data matrix } }}\author{Alexandros Karatzoglou\cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}\seealso{ \code{\link{ksvm-class}}, \code{\link{kcca-class}} }\examples{# another example using the irisdata(iris)test <- sample(1:50,20)kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),features=2)#print the principal component vectorspcv(kpc)rotated(kpc)kernelf(kpc)eig(kpc)}\keyword{classes}
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -