亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ffnc.m

?? 這個(gè)為模式識(shí)別工具箱
?? M
字號(hào):
%FFNC Feed-forward neural net classifier back-end % % 	[W,HIST] = FFNC (ALG,A,UNITS,ITER,W_INI,T,FID)%% INPUT% 	ALG   Training algorithm: 'bpxnc' for back-propagation (default), 'lmnc' %         for Levenberg-Marquardt% 	A     Training dataset% 	UNITS Array indicating number of units in each hidden layer (default: [5])% 	ITER  Number of iterations to train (default: inf)% 	W_INI Weight initialisation network mapping (default: [], meaning %         initialisation by Matlab's neural network toolbox)% 	T     Tuning set (default: [], meaning use A)%   FID   File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT% 	W     Trained feed-forward neural network mapping% 	HIST  Progress report (see below)%% DESCRIPTION % This function should not be called directly, but through one of its % front-ends, BPXNC or LMNC. Uses the Mathworks' Neural Network toolbox.% % SEE ALSO% MAPPINGS, DATASETS, BPXNC, LMNC, NEURC, RNNC, RBNC, PRPROGRESS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: ffnc.m,v 1.17 2005/01/20 09:09:07 duin Exp $function [w,hist] = ffnc(alg,a,units,max_iter,w_ini,t,fid)	prtrace(mfilename);	% Settings for the different training algorithms.		if exist('nnet') ~= 7		error('Neural network toolbox not found')	end	if (strcmp(alg,'bpxnc'))		mapname = 'BP Neural Classf';		elseif (strcmp(alg,'lmnc'))		mapname = 'LM Neural Classf';	else		error('illegal training algorithm specified');	end;	% Check arguments	if (nargin < 7), fid = []; end;	if (nargin < 6) | (isempty(t))		prwarning(2,'no tuning set supplied, using training set for tuning (risk of overfit)');		if (nargin < 2), t = []; else, t = a; end;	end	if (nargin < 5) | (isempty(w_ini))		prwarning(3,'no initialisation supplied, using Nguyen-Widrow random initialisation');		w_ini = []; 	end	if (nargin < 4) | (isempty(max_iter))		prwarning(3,'no maximum number of iterations supplied, assuming infinite');		max_iter = inf; 	end	if (nargin < 3) | (isempty(units))		prwarning(2,'no network architecture specified, assuming one hidden layer of 5 units');		units = 5; 	end	if (nargin < 2) | (isempty(a))		w = mapping(alg,{units,max_iter,w_ini,t,fid});		w = setname(w,mapname);		hist = [];		return	end	% Training target values.	prwarning (4, 'using training targets 0.9/0.1');	target_high	= 0.9;	target_low	= 0.1;	% Check whether the dataset is valid.	islabtype(a,'crisp');	isvaldset(a,1,2); 							% At least 1 object per class, 2 classes	iscomdset(a,t);   							% Check whether training and tuning set match		[m,k,c] = getsize(a); lablist = getlablist(a); 	% Standard training parameters.	disp_freq   = inf; 	err_goal 		= 0.02/m;						% Mean-squared error goal, stop if reached	trnsf_fn	  = 'logsig';					% Transfer function  perf_fn     = 'mse';            % Performance function	% Settings for the different training algorithms.	tp.show   = disp_freq;	tp.time   = inf;	tp.goal   = err_goal;	if (strcmp(alg,'bpxnc'))		trnalg 					= 'traingdx'; 		lrnalg 					= 'learngdm';		burnin       		= 500;			% Never stop training before this many iters		tp.epochs    		= min(50,max_iter); 	% Iteration unit		tp.lr        		= 0.01;			% BP, initial value for adaptive learning rate		tp.lr_inc    		= 1.05;			% BP, multiplier for increasing learning rate		tp.lr_dec    		= 0.7;			% BP, multiplier for decreasing learning rate		tp.mc        		= 0.95;			% BP, momentum		tp.max_perf_inc = 1.04;			% BP, error ratio		tp.min_grad  		= 1e-6;			% BP, minimum performance gradient		tp.max_fail  		= 5;				% BP, maximum validation failures	elseif (strcmp(alg,'lmnc'))		trnalg 					= 'trainlm';  		lrnalg 					= 'learngdm';		burnin       		= 50;				% Never stop training before this many iters		tp.epochs 	 		= min(1,max_iter); 		% Iteration unit		tp.mem_reduc 		= 1;				% Trade-off between memory & speed		tp.max_fail  		= 1; 				% LM, maximum validation failures		tp.min_grad  		= 1e-6;			% LM, minimum gradient, stop if reached		tp.mu  	    		= 0.001;		% LM, initial value for adaptive learning rate		tp.mu_inc    		= 10;				% LM, multiplier for increasing learning rate		tp.mu_dec    		= 0.1;			% LM, multiplier for decreasing learning rate		tp.mu_max    		= 1e10;			% LM, maximum learning rate	end;		% Scale each feature to the range [0,1].	prwarning(3,'scaling such that training set features have range [0,1]');	ws = scalem(a,'domain'); a_scaled = a*ws; t_scaled = t*ws;	% Set number of network outputs: 1 for 2 classes, c for c > 2 classes.	if (c == 2), cout = 1; else, cout = c; end	% Create target matrix: row C contains a high value at position C,	% the correct class, and a low one for the incorrect ones (place coding).	if (cout > 1)    target = target_low * ones(c,c) + (target_high - target_low) * eye(c);	else		target = [target_high; target_low];	end	% Create the target arrays for both datasets.	target_a = target(getnlab(a),:)';	target_t = target(getnlab(t),:)';	% Create the network layout: K inputs, N(:) hidden units, COUT outputs.	numlayers = length(units)+1; numunits = [k,units(:)',cout];	transfer_fn = cellstr(char(ones(numlayers,1)*trnsf_fn));	% Create network and set training parameters. The network is initialised	% by the Nguyen-Widrow rule by default.	net = newff(ones(numunits(1),1)*[0 1],numunits(2:end),...							transfer_fn,trnalg,lrnalg,perf_fn);	net.trainParam = tp;	% If an initial network is specified, use its weights and biases.	if (~isempty(w_ini))		% Use given initialisation.		[data,lab,type_w] = get(w_ini,'data','labels','mapping_file');		if (strcmp(type_w,'sequential'))			a_scaled = a*data{1}; t_scaled = t*data{1}; ws = data{1};			[data,lab,type_w] = get(data{2},'data','labels','mapping_file');		end		% Check whether the mapping's dimensions are the same as the network's.		[kw,cw] = size(w_ini); net_ini = data{1};		if (~strcmp(type_w,'neurc')) | (kw ~= k) | (cw ~= c) | ...				(net.numInputs  ~= net_ini.numInputs) | ...				(net.numLayers  ~= net_ini.numLayers) | ...				(net.numOutputs ~= net_ini.numOutputs) | ...				any(net.biasConnect ~= net_ini.biasConnect) | ...				any(net.inputConnect ~= net_ini.inputConnect) | ...				any(net.outputConnect ~= net_ini.outputConnect)			error('incorrect size initialisation network supplied')		end		% Check whether the initialisation network was trained on the same data.		[dummy1,nlab,dummy2] = renumlab(lablist,lab);		if (max(nlab) > c)			error('initialisation network should be trained on same classes')		end		net.IW = net_ini.IW; net.LW = net_ini.LW; net.b = net_ini.b;	end	% Initialize loop 	opt_err = inf; opt_iter = inf; opt_net = net; 	iter = 0; this_iter = 1; hist = []; 		% Loop while:	% - training has not gone on for longer than 50 iterations or 2 times the 	%   number of iterations for which the error was minimal, and	% - the number of iterations does not exceed the maximum	% - the actual training function still performed some iterations  	prprogress(fid,'ffnn:  Feed-Forward Neural Net\n');				  while ((iter <= 2*opt_iter) | (iter < burnin)) & ...				(iter < max_iter) & (this_iter > 0) & (opt_err > 0)		% Call TRAIN, from Matlab's NN toolbox.		prwarning(4,'[%d] calling NNETs train', iter);		[net,tr] = train(net,+a_scaled',target_a);		this_iter = length(tr.epoch)-1; iter = iter + this_iter;		% Copy current learning rate as the one to start with for the next time.		if (strcmp(alg,'bpxnc'))			net.trainParam.lr = tr.lr(end);		else			net.trainParam.mu = tr.mu(end);		end;		% Map train and tuning set.  	w = mapping('neurc','trained',{net},lablist,k,c);  	w = setname(w,mapname); 			% Calculate mean squared errors (MSE).  	out_a = a_scaled*w; out_t = t_scaled*w; 		mse_a = mean(mean(((out_a(:,1:cout))-target_a').^2,1));		mse_t = mean(mean(((out_t(:,1:cout))-target_t').^2,1));		% Calculate classification errors.		e_a = testc(a_scaled,w); e_t = testc(t_scaled,w);			% If this error is minimal, store the iteration number and weights.  	if (e_t < opt_err)			prprogress(fid,'                --  minimum error %3.3f found, storing network  --\n', e_t);  		opt_err = e_t; opt_iter = iter; opt_net = net;   	end		w1 = cell2mat(net.IW); w1 = w1(:);		%w2 = cell2mat(net.LW'); bugfix, doesnot work for multilayer networks		%w2 = w2(:);		netLW = net.LW(:);		w2 = [];		for j=1: length(netLW)			ww = netLW{j};			w2 = [w2; ww(:)];		end  	hist = [hist; iter e_a e_t mse_a mse_t ...						mean([w1; w2].^2)];  	prprogress(fid,'  epochs:%5i  ea: %3.3f  et: %3.3f  msea: %3.3f  mset: %3.3f mean-w^2: %3.3f min_error: %3.3f\n', ...						hist(end,:), opt_err);  end  prprogress(fid,'ffnn finished\n');					% Create mapping.  w = ws*mapping('neurc','trained',{opt_net},lablist,k,c);  w = setname(w,mapname);	w = setcost(w,a);return

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲视频一区在线| 国产在线精品国自产拍免费| 蜜臀久久99精品久久久画质超高清| 国产伦精一区二区三区| 91国偷自产一区二区三区成为亚洲经典 | 日韩一区在线播放| 奇米在线7777在线精品| 色综合夜色一区| 欧美韩国日本不卡| 久久成人免费电影| 欧美日韩五月天| 亚洲免费在线观看| 成人精品免费网站| 久久久99精品免费观看| 日韩成人午夜电影| 欧美综合亚洲图片综合区| 中日韩免费视频中文字幕| 久久99热99| 日韩午夜精品视频| 免费高清视频精品| 制服丝袜亚洲色图| 丝瓜av网站精品一区二区| 91国产免费观看| 亚洲激情在线激情| 一本色道久久综合亚洲91| 一区视频在线播放| 成人av在线网| 中文幕一区二区三区久久蜜桃| 国产一区二区三区在线观看精品 | 国产一区二区三区香蕉 | 亚洲色图制服诱惑| 97精品视频在线观看自产线路二| 中文幕一区二区三区久久蜜桃| 国产露脸91国语对白| 2021中文字幕一区亚洲| 国产一区二区三区香蕉| 久久久久亚洲蜜桃| 国产福利视频一区二区三区| 国产日产欧美一区二区视频| 成人精品视频网站| 亚洲精品国产视频| 欧美日韩免费观看一区二区三区| 亚洲一卡二卡三卡四卡无卡久久 | 91丨porny丨国产入口| 亚洲六月丁香色婷婷综合久久| 91在线观看免费视频| 一区二区成人在线| 欧美疯狂性受xxxxx喷水图片| 免费看黄色91| 欧美激情一区二区三区不卡| 色一情一伦一子一伦一区| 亚洲va欧美va天堂v国产综合| 欧美巨大另类极品videosbest | 日产国产高清一区二区三区| 日韩欧美国产不卡| 高清在线不卡av| 一区二区三区成人| 日韩视频一区二区三区在线播放| 韩国女主播一区二区三区| 国产精品欧美极品| 欧美日韩在线播放| 国产一区二区精品久久91| 国产精品狼人久久影院观看方式| 欧美亚洲一区二区三区四区| 看国产成人h片视频| 中文字幕一区二区三区在线不卡| 欧美日韩黄色影视| 成人ar影院免费观看视频| 亚洲国产综合91精品麻豆| 精品国产一区二区三区不卡| 91丨porny丨中文| 久久精品免费看| 亚洲精品ww久久久久久p站| 日韩久久久精品| 在线影院国内精品| 国产在线视视频有精品| 一区二区三区日韩在线观看| 26uuu另类欧美| 欧美日韩在线综合| 成人免费高清视频在线观看| 奇米四色…亚洲| 一区二区免费看| 欧美激情艳妇裸体舞| 欧美刺激脚交jootjob| 日本韩国欧美在线| 国产精品一区二区三区四区| 日本大胆欧美人术艺术动态| 亚洲精品一二三区| 欧美精彩视频一区二区三区| 精品免费日韩av| 欧美精选午夜久久久乱码6080| 99re在线精品| 国产mv日韩mv欧美| 狠狠色丁香九九婷婷综合五月| 亚洲高清不卡在线| 亚洲国产日韩综合久久精品| 日韩美女视频19| 亚洲国产精品v| 久久久精品2019中文字幕之3| 制服视频三区第一页精品| 在线精品亚洲一区二区不卡| 99re亚洲国产精品| 成人av资源下载| 成人免费视频播放| 国产精品一区二区男女羞羞无遮挡| 麻豆精品在线观看| 青青草国产成人99久久| 日韩电影免费一区| 蜜臀av国产精品久久久久| 日韩精品欧美精品| 三级久久三级久久久| 亚洲电影你懂得| 日韩精品久久理论片| 日韩国产成人精品| 秋霞午夜av一区二区三区| 青青草国产成人99久久| 免费观看成人av| 韩国一区二区视频| 国产成人午夜视频| 国产成人午夜精品影院观看视频| 国产成人av一区| 成人国产电影网| 在线免费观看视频一区| 欧美日韩国产片| 日韩午夜在线播放| 国产午夜精品久久久久久久| 国产欧美一区二区三区鸳鸯浴| 日本一二三四高清不卡| 国产精品久久国产精麻豆99网站| 国产精品福利一区二区| 亚洲精品水蜜桃| 免费在线欧美视频| 成人小视频在线观看| 色嗨嗨av一区二区三区| 欧美日韩国产大片| 精品免费视频一区二区| 欧美国产精品劲爆| 夜夜爽夜夜爽精品视频| 丝袜美腿亚洲色图| 福利电影一区二区| 欧美日韩一区视频| 久久精品免费在线观看| 亚洲色图都市小说| 日本欧美韩国一区三区| 国产精品中文字幕日韩精品| 91视频www| 日韩欧美激情在线| 日韩一区中文字幕| 美女视频黄免费的久久| caoporm超碰国产精品| 777xxx欧美| 国产精品理论片| 麻豆精品一区二区| 94-欧美-setu| 欧美岛国在线观看| 亚洲美女屁股眼交| 国产福利91精品| 欧美三级乱人伦电影| 日本一区二区视频在线| 日韩精品久久理论片| av在线不卡网| 欧美精品一区二区三区一线天视频| 自拍偷拍亚洲激情| 国产伦理精品不卡| 欧美一级精品大片| 一区二区三区中文字幕电影| 国产综合成人久久大片91| 欧美午夜免费电影| 成人欧美一区二区三区黑人麻豆| 另类人妖一区二区av| 欧美在线高清视频| 国产精品超碰97尤物18| 精品一区二区三区在线播放 | k8久久久一区二区三区| 91精品国产高清一区二区三区| 亚洲欧美在线视频观看| 国产一区二区三区香蕉| 欧美大黄免费观看| 日日骚欧美日韩| 欧美日韩国产精品成人| 亚洲一二三级电影| 色综合天天综合网天天狠天天| 国产人成亚洲第一网站在线播放| 日本视频一区二区| 在线不卡中文字幕| 亚洲午夜av在线| 色吊一区二区三区| 亚洲视频1区2区| 色视频一区二区| 亚洲精品水蜜桃| 欧美色区777第一页| 一区二区免费在线| 欧美视频一区在线观看| 一级精品视频在线观看宜春院 | 欧美一区二区三区视频在线观看| 亚洲午夜免费电影| 欧美日韩国产综合草草| 亚洲午夜久久久久中文字幕久| 欧美日韩一二区| 日韩精品1区2区3区|