亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ginisvm.h

?? SVM經典調試程序,內有說明,應用簡便,可用做回歸分類方面的計算
?? H
字號:
#ifndef _GINI_SVM_BLOCK_#define _GINI_SVM_BLOCK_/*****************************************************************************/// NAME :  Gini Support Vector Machine interface// // DESCRIPTION :  Interface file to GiniSVM class.//// USAGE ://// KNOWN BUGS ://// BUG REPORT: shantanu@jhu.edu///*****************************************************************************/#include<ginidefs.h>#include<ginikernel.h>#include<stdio.h>#include<sys/time.h>// The SVM machine includes four modes , in which the state could be// Evaluation mode where the machine only makes produces decision based // on the input vector// GiniSVMBLKTRN mode is the normal mode of operation where the // machine does a batch training over given input data points// GiniSVMHUGTRN mode is used when the training data size is very large// and hence an single optimization mode is followed.// GiniSVMSEQTRN mode is the sequential training mode, where in optimization// is based on the previous support vectors and the current input.// GiniSVMTRANS mode is the transductive mode of the SVM wherein the// the machine learns from unlabeled samples based on the the previous// training examples.// GiniSVMCOMADAPT is the SVM learning mode where the machine adapts the // complexity trade off term C to achieve better generalization metric// implying the number of support vectors.a// GiniSVMKERADAPT is the SVM learning mode where the machine tries to // adapt the kernel parameters to achieve better generalization.// GiniSVMRAW is the start mode for the machine wherein the machine has not// been trained as yet. //// This machine tries to optimize memory by simulating virtual memory// wherein all the kernel values are computed before hand and they// stored in memory which is partially mapped to hard-disk. Only the// cache correspoding to the support vectors are stored and the rest// are kept on the disk. enum GiniSVMTrainingMode{   GINISVM_EVAL,   GINISVM_BLKTRN,   GINISVM_HUGTRN,   GINISVM_SEQTRN,   GINISVM_TRANS,   GINISVM_COMADAPT,   GINISVM_KERADAPT,   GINISVM_RAW};enum GiniSVMErrno{   GINISVM_NOERROR,   GINISVM_OUTOFMEM,   GINISVM_BADFORMAT};enum GINI_status{   GINI_UP_DOWN,   GINI_DOWN,   GINI_UP};struct GINI_Set{   GINI_u32 dataind;   GINI_double alpha;   GINI_double E;   GINI_u32 shrinklevel;   GINI_u32 cachehits;   GINI_bool cacheupdate;   GINI_Set  *next;   GINI_Set  *prev;};class GINI_SVMBlock{   // Holds the lagrangian values   // For a multi-class scenario this is a    // multi-dimensional array.   GINI_double** lagrange;   // Support Vectors   GINI_double** supportVectors;   // Bias which is a vector in a multi-class   // case.   GINI_double *bias;   // Number of SVs   GINI_u32 numberofSVs;   // Feature vector dimension   GINI_u32 dimension;   // Number of classes   GINI_u32 classes;   // Rate Distortion Factor   GINI_double rdist;   // Type of kernel   GINI_SVMKernel *kernel;   // Training Mode   GiniSVMTrainingMode mode;   //-----------------------------   // Training parameters   //-----------------------------   // Training Labels which are prior   // probabilities indicating our initial   // confidence values.   GINI_double **Y;   // Margin Vector Set   GINI_Set **svset;   // Suitable set candidate for computing   // the second heuristic in SMO.   GINI_Set **maxE;   GINI_Set **minE;   // Cache for storing decision functions.   GINI_Set ***svmap;   // Training data   GINI_double **traindata;   // Memory to store the set sizes for all the   // classes.   GINI_u32 *setsize;   // List iterator used by examineExample   GINI_Set *globalptr;   // Total number of data points   GINI_u32 totaldata;   // Training size for the support vector   // machine training   GINI_u32 maxtraindata;   // Complexity trade off parameter   GINI_double *C;   // Tolerance value for the values of lagrangians   GINI_double alphaeps;   // Tolerance for kkt condition   GINI_double kkteps;   // Search window size when random data points   // are selected.   GINI_u32 srchwindow;   // Percent decrease in the cost function   GINI_double costeps;   // Costfunction window   // Number of times the cost function is computed.   GINI_u32 costwindow;   // Total number of cache hits   GINI_u32 numofhits;   // Total number of cache hits   GINI_u32 maxsvsrch;   // Total number of cache hits   GINI_u32 kktiter;   // Total number of first level iterations   GINI_u32 fpass;   // Seed for using the random number generator   GINI_u32 seed;   // Floor count gives the number of times   // truncation occurs.   GINI_u32 floorcount;   // Truncation for alphas at the end of training.   // for approximate solutions.   GINI_double threshold;   // Number of training iterations   GINI_u32 iterations;   // Boolean indicator to indicate if there   // is space remaining in the cache.   GINI_bool cachefull;   // Errno for error tracking   GINI_ERROR_VAL ginierr;   // Statistics variables   // Number of times in the loop svs were deleted   // and added.   GINI_u32 numofdel;   GINI_u32 numofadd;   GINI_u32 phase1;   GINI_u32 phase2;   GINI_u32 phase3;   GINI_u32 phase4;   GINI_u32 startupsize;   GINI_double timer1;   GINI_double timer2;   GINI_double timer3;   GINI_double timer4;   GINI_double timer5;   GINI_double timer6;   GINI_double timer7;   GINI_double timer8;   //-----------------------------   // private functions   //-----------------------------   GINI_double currtimeval( struct timeval *cmp );   void printtimers();   void _purgesvlist();   // Main 4x4 optimization routine   // that uses four coefficients to   // optimize at the same time.   GINI_u32 _takestep (  GINI_u32 i1,                        GINI_u32 c1,                        GINI_u32 i2,                        GINI_u32 c2,			GINI_double *E11,			GINI_double *E12,			GINI_double *E21,			GINI_double *E22                     );   // Inner Loop that looks for the second example   // to optimize   GINI_u32 _examineExample( GINI_u32 i1 );   GINI_u32 _examinesvExample( GINI_u32 i1 );   // Get an estimate of the bias   void _biasestimate();   // Get an estimate of KKT condition   // for each data point   GINI_bool _kktcondition( GINI_u32 dataind, 		            GINI_u32 *decision,			    GINI_double *E11,			    GINI_status *dir                          );   GINI_bool _kktsvcondition( GINI_u32 dataind, 		            GINI_u32 *decision,			    GINI_double *E11,			    GINI_status *dir                          );   // Removes an element from the link list.   void _removeelement(GINI_u32 classid, GINI_Set *ptr);   // Adds an element to the link list.   GINI_Set* _addelement(  GINI_u32 dataid, 		      GINI_u32 classid,		      GINI_double ecache,		      GINI_double alpha                   );   // Evaluates the threshold function based on   // reverse water-filling procedure and the unormalized   // array of class evaluation functions.   GINI_double _evaluateThreshold( GINI_double *currfn);   GINI_status _getdirection( GINI_u32 dataid, GINI_u32 classid);   GINI_u32 _minmaxopt();   //-----------------------------   // public functions   //-----------------------------   public:   // Constructor   GINI_SVMBlock( GINI_SVMKernel *initkernel );   // Destructor   virtual ~GINI_SVMBlock();   // Initialization of SVM machine using an input   // configuration file   GINI_bool Initialize( FILE *input );   // Sequentially add training data to the    // support vector machine.   GINI_bool InsertTrainingData( GINI_double *label, GINI_double* data);   // Sequentially add training data to the    // support vector machine with a prior indicating the weightage   // of the data point.   GINI_bool InsertTrainingData( GINI_double *label,                                  GINI_double* data,                                 GINI_double prior		               );   // Saves the GiniSVM configuration in a file   GINI_bool Write( FILE *output);   // Reads in the GiniSVM configuration from a file   GINI_bool Read( FILE *output);   // Initializes training mode for the SVM machine.   GINI_bool InitTraining(                            // Number of data points                           GINI_u32 number,                                     // Number of input dimension                              GINI_u32 dimension,                           // Number of Classes                              GINI_u32 inpclass,                           // Starting complexity tradeoff term                           GINI_double *C,			   // Rate distortion factor			   GINI_double rdist,                           // Tolerance value for the lagrangians                           GINI_double inpeps,			   // Tolerance value for kkt			   GINI_double inpkkteps,			   // Search window parameter			   GINI_u32 srchwindow,			   // Cost function tolerance			   GINI_double inpcosteps,			   // Length of cost window			   GINI_u32   inpcostwindow,			   // Cache-hit threshold			   GINI_u32  hitthreshold,			   // Maximum sv search window			   GINI_u32  maxsvsrch,			   // KKT tolerance increase window			   GINI_u32  liter,			   // Number of first passes over full			   // optimization			   GINI_u32 inpfpass   );   // Start Training the machine   // precomp is a flag saying if the kernel values   // are to be pre-computed or not. Verbose flag toggles   // between printing detail optimization information.   GINI_bool StartTraining( GINI_bool precomp, 		            GINI_u32 iter,		            GINI_bool verbose		          );   // Stop training the SVM machine   GINI_u32 StopTraining();   //-----------------------------------   // Post Training evaluation Functions   //-----------------------------------     // SVM decision function based on the  input vector    virtual void Value ( GINI_double* input, GINI_double* output );   // GiniSVM decision function based on the  input vector    virtual void GiniProb ( GINI_double* input, GINI_double* output );   // Total amount of memory required to store this machine   GINI_u32 GetSize() { return numberofSVs; }   // Gets the dimension of the support vectors for this    // machine.    GINI_u32 GetDimension() { return dimension; }   // Returns threshold value for this SVM   GINI_double GetThreshold( GINI_u32 classid ) { return bias[classid]; }   // Access to the value of weights parameters   GINI_double GetAlpha( GINI_u32 index , GINI_u32 classid ) { return lagrange[index][classid]; }   // Returns the value of a support vector element    GINI_double GetSVElement( GINI_u32 i, GINI_u32 j) { return supportVectors[i][j]; }   // Returns the number of classes.   GINI_u32 GetClasses() { return classes; }   //-----------------------------------   // Performance functions   //-----------------------------------   // Total number of points this machine has been trained on   GINI_u32 GetNumberofTrainingPoints() { return totaldata;  }   //-----------------------------------   // Debug functions   //-----------------------------------   // Computes the cost function to check if    // the value actually decreases or not.   GINI_double CostFunction();   GINI_double evaluateCache( GINI_u32 dind, GINI_u32 cind );};#endif   

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品夜夜夜夜久久| 蜜臀久久99精品久久久久宅男| 国产精品久久久久久久久免费相片| 伊人一区二区三区| 久99久精品视频免费观看| 91亚洲精华国产精华精华液| 欧美中文一区二区三区| 久久综合久久综合九色| 亚洲一二三区在线观看| 99视频精品全部免费在线| 宅男噜噜噜66一区二区66| 中文字幕一区二区三区乱码在线| 日本在线不卡视频| 91视频免费播放| 久久精品综合网| 麻豆国产精品一区二区三区| 在线精品视频一区二区三四| 中文字幕亚洲在| 成人亚洲一区二区一| 精品国产乱码久久久久久久| 午夜精品成人在线| 欧美视频完全免费看| 亚洲三级久久久| 成人h版在线观看| 国产日韩成人精品| 国产乱国产乱300精品| 91精品国产91久久久久久一区二区| 亚洲欧美日韩国产成人精品影院| 国产·精品毛片| 国产色91在线| 国产精品资源网站| 久久免费偷拍视频| 精品在线播放免费| 日韩精品中文字幕在线一区| 蜜桃视频免费观看一区| 欧美一区二区福利在线| 性感美女极品91精品| 欧美视频一区二区在线观看| 亚洲午夜在线视频| 欧美少妇一区二区| 亚洲国产精品久久久久婷婷884| 91国产免费观看| 一区二区三区免费在线观看| 欧洲色大大久久| 亚洲第一久久影院| 欧美精品视频www在线观看 | 欧日韩精品视频| 夜夜爽夜夜爽精品视频| 欧美三级一区二区| 日韩电影在线免费| 日韩精品一区二区三区蜜臀 | 一区二区三区在线视频免费观看| 色综合色狠狠综合色| 亚洲高清三级视频| 日韩欧美在线观看一区二区三区| 黑人精品欧美一区二区蜜桃| 久久色视频免费观看| 波多野结衣精品在线| 一区二区三区日本| 欧美一级日韩一级| 国产成人综合亚洲91猫咪| 自拍偷自拍亚洲精品播放| 欧美三级乱人伦电影| 美女网站在线免费欧美精品| 中文字幕欧美区| 欧美日韩国产综合一区二区三区| 精品一区二区三区av| **网站欧美大片在线观看| 欧美亚洲综合久久| 国产美女精品人人做人人爽 | 色婷婷av一区二区三区gif| 午夜亚洲国产au精品一区二区| 精品国精品自拍自在线| 91视频一区二区| 韩国女主播一区| 一区二区三区在线影院| 久久久久久毛片| 欧美日韩小视频| 国产999精品久久| 日韩电影在线一区| 亚洲乱码精品一二三四区日韩在线| 欧美丰满少妇xxxbbb| 成人午夜视频免费看| 日韩精品乱码av一区二区| 国产精品久久三区| 日韩三级伦理片妻子的秘密按摩| 91在线精品秘密一区二区| 久久99久久精品| 性感美女极品91精品| 亚洲日本青草视频在线怡红院| 日韩一二三四区| 欧美日韩在线播| 99国产精品久久久久久久久久久| 另类欧美日韩国产在线| 亚洲高清视频的网址| 成人欧美一区二区三区小说| xnxx国产精品| 欧美一区二区三区不卡| 在线观看网站黄不卡| 成人免费电影视频| 国产九九视频一区二区三区| 日本aⅴ亚洲精品中文乱码| 一区二区三区精品久久久| 国产欧美日韩麻豆91| 精品日韩一区二区三区免费视频| 欧美日韩视频一区二区| 91免费小视频| 99久久精品一区二区| 成人一区二区视频| 久久99久久久欧美国产| 日本亚洲最大的色成网站www| 一区二区在线电影| 亚洲色图另类专区| 亚洲人午夜精品天堂一二香蕉| 国产欧美日韩中文久久| 久久久久99精品一区| 久久久久国产精品厨房| 久久伊人中文字幕| 久久欧美中文字幕| www激情久久| 国产精品久久一卡二卡| 久久精品亚洲精品国产欧美| 久久亚洲影视婷婷| 国产欧美日韩中文久久| 国产精品嫩草影院com| 国产精品久久久久一区二区三区| 国产精品伦一区| 亚洲最大色网站| 日韩精品一区第一页| 久久99热狠狠色一区二区| 国产一区二区三区电影在线观看 | 精品嫩草影院久久| 日韩视频在线一区二区| 欧美一激情一区二区三区| 欧美一级片免费看| 精品剧情在线观看| 欧美激情中文不卡| 亚洲欧洲av另类| 婷婷丁香久久五月婷婷| 日本视频一区二区三区| 国产一区在线看| 91麻豆国产在线观看| 欧美日韩高清一区二区三区| 亚洲精品在线观看网站| 国产精品另类一区| 亚洲自拍与偷拍| 国产在线看一区| 日本精品一级二级| 精品日韩在线观看| 国产精品国产三级国产普通话三级| 一区二区不卡在线播放| 另类的小说在线视频另类成人小视频在线 | 久久综合久久综合九色| 亚洲乱码中文字幕| 韩日精品视频一区| 91毛片在线观看| 日韩欧美一区在线观看| 国产精品成人免费在线| 免费观看在线色综合| 成人午夜精品在线| 91麻豆精品国产自产在线 | 亚洲一二三四在线| 欧美日韩三级一区| 国产视频亚洲色图| 婷婷丁香激情综合| 91香蕉视频mp4| 久久色视频免费观看| 一区二区三区四区在线| 久久精品久久精品| 欧美色图激情小说| 国产精品久久午夜夜伦鲁鲁| 麻豆成人久久精品二区三区小说| 91视频免费看| 国产香蕉久久精品综合网| 三级久久三级久久久| 91网站在线观看视频| 日韩精品一区二区三区视频| 亚洲综合区在线| av一区二区三区| 2023国产精华国产精品| 舔着乳尖日韩一区| 91麻豆精东视频| 欧美国产日韩亚洲一区| 开心九九激情九九欧美日韩精美视频电影 | 日韩精品三区四区| 欧美三级电影在线看| 中文字幕在线观看不卡视频| 国产一区二三区| 日韩欧美精品在线| 日韩专区欧美专区| 色94色欧美sute亚洲13| 国产精品每日更新在线播放网址| 国产一区二区免费视频| 亚洲精品一区二区三区影院| 日本伊人色综合网| 7777精品久久久大香线蕉| 亚洲国产综合视频在线观看| 91麻豆国产精品久久| 亚洲视频一区二区在线| 99久久亚洲一区二区三区青草|