?? inhedron.c
字號:
/*This code is described in "Computational Geometry in C" (Second Edition),Chapter 7. It is not written to be comprehensible without theexplanation in that book.Compile: gcc -o inhedron inhedron.c -lm (or simply: make)Run (e.g.): inhedron < i.8Written by Joseph O'Rourke, with contributions by Min Xu.Last modified: April 1998Questions to orourke@cs.smith.edu.--------------------------------------------------------------------This code is Copyright 1998 by Joseph O'Rourke. It may be freelyredistributed in its entirety provided that this copyright notice isnot removed.--------------------------------------------------------------------*/#include <stdio.h>#include <math.h>#define EXIT_FAILURE 1#define X 0#define Y 1#define Z 2#define MAX_INT 2147483647 typedef enum { FALSE, TRUE } bool;#define DIM 3 /* Dimension of points */typedef int tPointi[DIM]; /* Type integer point */typedef double tPointd[DIM]; /* Type double point */#define PMAX 10000 /* Max # of pts */tPointi Vertices[PMAX]; /* All the points */tPointi Faces[PMAX]; /* Each triangle face is 3 indices */int check = 0;tPointi Box[PMAX][2]; /* Box around each face *//*---------------------------------------------------------------------Function prototypes.---------------------------------------------------------------------*/char InPolyhedron( int F, tPointi q, tPointi bmin, tPointi bmax, int radius );char SegPlaneInt( tPointi Triangle, tPointi q, tPointi r, tPointd p, int *m );int PlaneCoeff( tPointi T, tPointd N, double *D );void Assigndi( tPointd p, tPointi a );int ReadVertices( void );int ReadFaces( void );void NormalVec( tPointi q, tPointi b, tPointi c, tPointd N );double Dot( tPointi q, tPointd d );void SubVec( tPointi q, tPointi b, tPointi c );char InTri3D( tPointi T, int m, tPointi p );char InTri2D( tPointi Tp[3], tPointi pp );int AreaSign( tPointi q, tPointi b, tPointi c );char SegTriInt( tPointi Triangle, tPointi q, tPointi r, tPointd p );char InPlane( tPointi Triangle, int m, tPointi q, tPointi r, tPointd p);int VolumeSign( tPointi a, tPointi b, tPointi c, tPointi d );char SegTriCross( tPointi Triangle, tPointi q, tPointi r );int ComputeBox( int F, tPointi bmin, tPointi bmax );void RandomRay( tPointi ray, int radius );void AddVec( tPointi q, tPointi ray );int InBox( tPointi q, tPointi bmin, tPointi bmax );char BoxTest ( int n, tPointi a, tPointi b );void PrintPoint( tPointi q );int irint( double x);/*-------------------------------------------------------------------*/main(){ int n, F, i; tPointi q, bmin, bmax; int radius; srandom( (int) time( (long *) 0 ) ); n = ReadVertices(); F = ReadFaces(); /* Initialize the bounding box */ for ( i = 0; i < DIM; i++ ) bmin[i] = bmax[i] = Vertices[0][i]; radius = ComputeBox( n, bmin, bmax ); printf("radius=%d\n", radius); while( scanf( "%d %d %d", &q[X], &q[Y], &q[Z] ) != EOF ) { printf( "\n----------->q = %d %d %d\n", q[X], q[Y], q[Z] ); printf( "In = %c\n", InPolyhedron( F, q, bmin, bmax, radius ) ); }}/* This function returns a char: 'V': the query point a coincides with a Vertex of polyhedron P. 'E': the query point a is in the relative interior of an Edge of polyhedron P. 'F': the query point a is in the relative interior of a Face of polyhedron P. 'i': the query point a is strictly interior to polyhedron P. 'o': the query point a is strictly exterior to( or outside of) polyhedron P.*/char InPolyhedron( int F, tPointi q, tPointi bmin, tPointi bmax, int radius ){ tPointi r; /* Ray endpoint. */ tPointd p; /* Intersection point; not used. */ int f, k = 0, crossings = 0; char code = '?'; /* If query point is outside bounding box, finished. */ if ( !InBox( q, bmin, bmax ) ) return 'o'; LOOP: while( k++ < F ) { crossings = 0; RandomRay( r, radius ); AddVec( q, r ); printf("Ray endpoint: (%d,%d,%d)\n", r[0],r[1],r[2] ); for ( f = 0; f < F; f++ ) { /* Begin check each face */ if ( BoxTest( f, q, r ) == '0' ) { code = '0'; printf("BoxTest = 0!\n"); } else code = SegTriInt( Faces[f], q, r, p ); printf( "Face = %d: BoxTest/SegTriInt returns %c\n\n", f, code ); /* If ray is degenerate, then goto outer while to generate another. */ if ( code == 'p' || code == 'v' || code == 'e' ) { printf("Degenerate ray\n"); goto LOOP; } /* If ray hits face at interior point, increment crossings. */ else if ( code == 'f' ) { crossings++; printf( "crossings = %d\n", crossings ); } /* If query endpoint q sits on a V/E/F, return that code. */ else if ( code == 'V' || code == 'E' || code == 'F' ) return( code ); /* If ray misses triangle, do nothing. */ else if ( code == '0' ) ; else fprintf( stderr, "Error, exit(EXIT_FAILURE)\n" ), exit(1); } /* End check each face */ /* No degeneracies encountered: ray is generic, so finished. */ break; } /* End while loop */ printf( "Crossings = %d\n", crossings ); /* q strictly interior to polyhedron iff an odd number of crossings. */ if( ( crossings % 2 ) == 1 ) return 'i'; else return 'o';}int ComputeBox( int F, tPointi bmin, tPointi bmax ){ int i, j, k; double radius; for( i = 0; i < F; i++ ) for( j = 0; j < DIM; j++ ) { if( Vertices[i][j] < bmin[j] ) bmin[j] = Vertices[i][j]; if( Vertices[i][j] > bmax[j] ) bmax[j] = Vertices[i][j]; } radius = sqrt( pow( (double)(bmax[X] - bmin[X]), 2.0 ) + pow( (double)(bmax[Y] - bmin[Y]), 2.0 ) + pow( (double)(bmax[Z] - bmin[Z]), 2.0 ) ); printf("radius = %lf\n", radius); return irint( radius +1 ) + 1;}/* Return a random ray endpoint */void RandomRay( tPointi ray, int radius ){ double x, y, z, w, t; /* Generate a random point on a sphere of radius 1. */ /* the sphere is sliced at z, and a random point at angle t generated on the circle of intersection. */ z = 2.0 * (double) random() / MAX_INT - 1.0; t = 2.0 * M_PI * (double) random() / MAX_INT; w = sqrt( 1 - z*z ); x = w * cos( t ); y = w * sin( t ); ray[X] = irint ( radius * x ); ray[Y] = irint ( radius * y ); ray[Z] = irint ( radius * z ); /*printf( "RandomRay returns %6d %6d %6d\n", ray[X], ray[Y], ray[Z] );*/}void AddVec( tPointi q, tPointi ray ){ int i; for( i = 0; i < DIM; i++ ) ray[i] = q[i] + ray[i];}int InBox( tPointi q, tPointi bmin, tPointi bmax ){ int i; if( ( bmin[X] <= q[X] ) && ( q[X] <= bmax[X] ) && ( bmin[Y] <= q[Y] ) && ( q[Y] <= bmax[Y] ) && ( bmin[Z] <= q[Z] ) && ( q[Z] <= bmax[Z] ) ) return TRUE; return FALSE;} /*--------------------------------------------------------------------- 'p': The segment lies wholly within the plane. 'q': The q endpoint is on the plane (but not 'p'). 'r': The r endpoint is on the plane (but not 'p'). '0': The segment lies strictly to one side or the other of the plane. '1': The segement intersects the plane, and 'p' does not hold.---------------------------------------------------------------------*/char SegPlaneInt( tPointi T, tPointi q, tPointi r, tPointd p, int *m){ tPointd N; double D; tPointi rq; double num, denom, t; int i; *m = PlaneCoeff( T, N, &D ); /*printf("m=%d; plane=(%lf,%lf,%lf,%lf)\n", m, N[X],N[Y],N[Z],D);*/ num = D - Dot( q, N ); SubVec( r, q, rq ); denom = Dot( rq, N ); /*printf("SegPlaneInt: num=%lf, denom=%lf\n", num, denom );*/ if ( denom == 0.0 ) { /* Segment is parallel to plane. */ if ( num == 0.0 ) /* q is on plane. */ return 'p'; else return '0'; } else t = num / denom; /*printf("SegPlaneInt: t=%lf \n", t );*/ for( i = 0; i < DIM; i++ ) p[i] = q[i] + t * ( r[i] - q[i] ); if ( (0.0 < t) && (t < 1.0) ) return '1'; else if ( num == 0.0 ) /* t == 0 */ return 'q'; else if ( num == denom ) /* t == 1 */ return 'r'; else return '0';}/*---------------------------------------------------------------------Computes N & D and returns index m of largest component.---------------------------------------------------------------------*/int PlaneCoeff( tPointi T, tPointd N, double *D ){ int i; double t; /* Temp storage */ double biggest = 0.0; /* Largest component of normal vector. */ int m = 0; /* Index of largest component. */ NormalVec( Vertices[T[0]], Vertices[T[1]], Vertices[T[2]], N ); /*printf("PlaneCoeff: N=(%lf,%lf,%lf)\n", N[X],N[Y],N[Z]);*/ *D = Dot( Vertices[T[0]], N ); /* Find the largest component of N. */ for ( i = 0; i < DIM; i++ ) { t = fabs( N[i] ); if ( t > biggest ) { biggest = t; m = i; } } return m;}/*---------------------------------------------------------------------Reads in the number and coordinates of the vertices of a polyhedronfrom stdin, and returns n, the number of vertices.---------------------------------------------------------------------*/int ReadVertices( void ){ int i, n; do { scanf( "%d", &n ); if ( n <= PMAX ) break; printf("Error in read_vertex: too many points; max is %d\n", PMAX); } while ( 1 ); printf( "Polyhedron Vertices:\n" ); printf( " i: x y z\n"); for ( i = 0; i < n; i++ ) { scanf( "%d %d %d", &Vertices[i][X], &Vertices[i][Y], &Vertices[i][Z] ); printf( "%3d:%4d%4d%4d\n", i, Vertices[i][X], Vertices[i][Y], Vertices[i][Z] ); } printf("n = %3d vertices read\n",n);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -