亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? plotlssvm.m

?? 很好的軟件包
?? M
字號:
function model = plotlssvm(model,ab,grain, princdim)% Plot the LS-SVM results in the environment of the training data% % >> plotlssvm({X,Y,type,gam, sig2, kernel})% >> plotlssvm({X,Y,type,gam, sig2, kernel}, {alpha,b})% >> model = plotlssvm(model)% % The first argument specifies the LS-SVM. The latter specifies the% results of the training if already known. Otherwise, the training% algorithm is first called. One can specify the precision of the% plot by specifying the grain of the grid. By default this value% is 50. The dimensions (seldims) of the input data to display can% be selected as an optional argument in case of higher dimensional% inputs (> 2). A grid will be taken over this dimension, while the% other inputs remain constant (0).%  %% Full syntax% %     1. Using the functional interface:% % >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain, seldims)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain, seldims)% %       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         alpha(*)      : support values obtained from training%         b(*)          : Bias term obtained from training%         grain(*)      : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*)    : The principal inputs one wants to span a grid (by default [1 2])% %%     2. Using the object oriented interface:% % >> model = plotlssvm(model)% >> model = plotlssvm(model, [], grain)% >> model = plotlssvm(model, [], grain, seldims)% %       Outputs    %         model(*)   : Trained object oriented representation of the LS-SVM model%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         grain(*)   : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*) : The principal inputs one wants to span a grid (by default [1 2])% % See also:%   trainlssvm, simlssvm.% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabfprintf('Start Plotting...')%% initiating the model...%if iscell(model),     model = initlssvm(model{:});    eval('model.alpha = ab{1}; model.b = ab{2};model.status = ''trained'';','model=trainlssvm(model);');end%figure;clfmodel = trainlssvm(model);% reconstruct the original support vectors ...[osvX,osvY] = postlssvm(model,model.xtrain(:,1:model.x_dim),model.ytrain(:,1:model.y_dim));%% define the principal dimensions one plots%if (model.x_dim>2)   % plotted principal dimensions  eval('princdim; restdim = setdiff(1:model.x_dim,princdim);','princdim=[1 2 3];');elseif (model.x_dim==2),  princdim = [1 2]; restdim = []; else  princdim = [1]; restdim = []; endif max(princdim)>model.x_dim,   error('Given dimensions exceed input dimensions...');end% classification (x_dim=2, y_dim=1:...) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if model.type(1)=='c', % 'classification'   %  % precision of plot  %  eval('grain;','grain = 50;');    if model.x_dim>=2,   %%%%%%%%%%%%%%%%%%       % Determine plot limits     xmin1=min(osvX(:,princdim(1))); if xmin1<0, xmin1=1.05*xmin1; else xmin1 = 0.98*xmin1; end    xmax1=max(osvX(:,princdim(1))); if xmax1>0, xmax1=1.05*xmax1; else xmax1 = 0.98*xmax1; end    xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.98*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.98*xmax2; end    xrange1 = xmin1:(xmax1-xmin1)/grain:xmax1;    xrange2 = xmin2:(xmax2-xmin2)/grain:xmax2;    [XX,YY] = meshgrid(xrange1,xrange2);    Xt = [reshape(XX,prod(size(XX)),1) reshape(YY,prod(size(YY)),1)];    xsteps = length(xrange1);    ysteps = length(xrange2);                %    % simulate the points    %    restdim = setdiff(1:model.x_dim, princdim);    rest = zeros(size(Xt,1),model.x_dim-2);    Xt = [Xt rest];    [ZZ,ff,model] = simlssvm(model,Xt(:,[princdim restdim]));    if min(ZZ)==max(ZZ), warning('Simulation over the input space results in only one class...'); end        %    % for plotting, the categorical format is required    %    if ~strcmpi(model.codetype,'none'),      if size(model.codebook1,1)~=1,	eval('[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2,model.code_distfct);',...	     '[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2);');      else	codebook_cat = model.codebook1;      end      eval('osvY = code(osvY, codebook_cat,{}, model.codebook2, model.codedist_fct, model.codedist_args);',...	   'osvY = code(osvY, codebook_cat,{}, model.codebook2);');          if max(max(ZZ))==-inf, 	error('bad coding scheme, no classes found after training');      end    else            if model.y_dim>1,	warning(['only first dimension is plotted, for multiclass' ...		 ' classification use categorical representation, ev.'...		 ' combined with a coding technique.']);      end      osvY = osvY(:,1);      ZZ = ZZ(:,1);      sosvY = sort(osvY);      codebook_cat = sosvY([1;find(sosvY(2:end)~=sosvY(1:end-1))+1])';    end        % contour plot    colormap cool;    map = colormap;    %cindex = [min(codebook1)+.1 codebook1 max(codebook1)-.1];    ZZd = reshape(ZZ(:,1),size(XX,1),size(XX,2));    eval('[C,h]=contourf(XX,YY,ZZd);','warning(''no surface plot feasable'');');     hold on;    eval('clabel(C,h,codebook_cat);',' ');            %    % plotting the datapoints    %    markers = {'*','s','+','o','x','d','v','p','h'};    for c=1:length(codebook_cat),      s = find(osvY(:,1)==codebook_cat(c));      plot(osvX(s,princdim(1)),osvX(s,princdim(2)) ,[markers{1+mod(c-1,9)} 'k']);      legstr{c} = ['class ' num2str(c)];    end    eval('legend(legstr);',' ');            % arrange axis    xlabel(['X_{' num2str(princdim(1)) '}']);    ylabel(['X_{' num2str(princdim(2)) '}']);    title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}, with ' num2str(length(codebook_cat)) ' different classes']);    axis([xmin1 xmax1 xmin2 xmax2]);      hold off;      else        error('cannot display this dimension..');  end      % function estimation (x_dim=1,2; y_dim=1)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%elseif model.type(1)=='f',  eval('grain;','grain = 200;');      % Determine plot limits     xmin1=min(osvX(:,princdim(1)));   xmax1=max(osvX(:,princdim(1)));       if model.x_dim>=2 & length(princdim)==2,  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Determine plot limits     xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.975*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.975*xmax2; end    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';    range2 = (xmin2:(xmax2-xmin2)/grain:xmax2)';        rest = zeros(size(range1,1),model.x_dim-2);    for i=1:length(range2),      Xt = [range1 ones(size(range1,1)).*range2(i) rest];      [r,ff,model]  = simlssvm(model, Xt(:,[princdim,restdim]));      z(i,:)=r';    end        surf(range1, range2,z);    hold on;    plot3(osvX(model.selector,princdim(1)),osvX(model.selector,princdim(2)), osvY(model.selector,1),'k*');    shading interp;    xlabel(['X_' num2str(princdim(1))]);    ylabel(['X_' num2str(princdim(2))]);    zlabel('Y');    title([' function estimation using LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '} ']);    view(-30,50);    hold off;  elseif and(model.x_dim==1,model.y_dim==1) | length(princdim)==1,    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';     rest = zeros(size(range1,1),model.x_dim-1);    grid = [range1 rest];    [z,ff,model]  = simlssvm(model,grid(:,[princdim(1) restdim]) );     plot(range1,z,'b');    hold on;    plot(osvX(model.selector,princdim(1)),osvY(model.selector,1),'k*');    xlabel('X');    ylabel('Y');    title([' function estimation using  LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}']);    %eval('title(['' function estimation using  LS-SVM_{\gamma='' num2str(model.gam(1)) '',\sigma^2='' num2str(model.kernel_pars) ''}^{'' kerneltype ''} datapoints (black *), and estimation  (blue line)'']);',' title(''function approximation using LS-SVM'')');    hold off;  else    Yh = simlssvm(model,osvX);    plot(Yh);    hold on;     plot(osvY,'*k');    xlabel('time');    ylabel('Y');    title([' function estimation using '...	   ' LS-SVM_{\gamma=' num2str(model.gam(1)) ...	   ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}'...	   ' datapoints (black *), and estimation  (blue line)']);    hold off  end  else    endfprintf('finished\n');

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩vs国产vs欧美| 五月天婷婷综合| 日韩欧美国产成人一区二区| 成人夜色视频网站在线观看| 天堂va蜜桃一区二区三区| 日韩午夜激情免费电影| 91香蕉视频污| av午夜精品一区二区三区| 男女激情视频一区| 亚洲一区二区精品久久av| 国产精品欧美极品| 精品久久久久99| 91精品国产黑色紧身裤美女| 99久久精品国产一区二区三区| 国产成人精品免费一区二区| 日韩电影一区二区三区四区| 一区二区三区四区av| 亚洲私人黄色宅男| 国产精品久久久久永久免费观看 | 亚洲综合图片区| 亚洲男女毛片无遮挡| 亚洲美腿欧美偷拍| 一区二区三区四区国产精品| 国产精品久久久久久久久搜平片 | 国产精品伦一区二区三级视频| 精品国产91洋老外米糕| 久久综合给合久久狠狠狠97色69| 欧美成人精品高清在线播放| 欧美高清视频在线高清观看mv色露露十八 | 中文字幕一区二区日韩精品绯色| 久久女同精品一区二区| 久久久精品国产免大香伊| 欧美高清在线视频| 日韩美女视频19| 亚洲一区二区三区精品在线| 三级在线观看一区二区| 亚洲国产一区二区在线播放| 日韩av电影天堂| 成人理论电影网| 欧美在线不卡一区| 精品裸体舞一区二区三区| 久久九九国产精品| 一卡二卡三卡日韩欧美| 美美哒免费高清在线观看视频一区二区| 精品亚洲成av人在线观看| 国产91精品一区二区麻豆网站 | 91黄色免费观看| 精品精品国产高清一毛片一天堂| 欧美国产一区二区在线观看| 天天免费综合色| av不卡在线观看| 天天亚洲美女在线视频| 亚洲一区视频在线观看视频| 狠狠网亚洲精品| 在线播放亚洲一区| 亚洲激情中文1区| 99视频热这里只有精品免费| 91麻豆精品国产| 亚洲综合精品久久| 色婷婷综合久久久中文字幕| 国产偷国产偷精品高清尤物| 青娱乐精品视频| 欧美性一区二区| 一区二区三区丝袜| 色综合天天综合狠狠| 国产精品麻豆久久久| 国产精品一区不卡| 久久这里只有精品视频网| 成人国产亚洲欧美成人综合网| jlzzjlzz亚洲日本少妇| 在线成人av影院| 亚洲成av人影院| 欧美精品在线一区二区| 亚洲成人免费在线观看| 欧美日韩精品福利| 一区二区三区精密机械公司| 99视频有精品| 亚洲一区免费观看| 91精品国产入口| 美女一区二区三区在线观看| 宅男在线国产精品| 国产高清无密码一区二区三区| 日韩视频免费直播| 三级久久三级久久| 精品久久久久久久久久久久包黑料 | www.色综合.com| 亚洲欧美另类图片小说| 9191国产精品| 国产精品123| 亚洲国产一区二区视频| 日韩免费看网站| 国产91清纯白嫩初高中在线观看| 中文字幕视频一区| 日韩一区二区三区免费看| 国产激情一区二区三区四区| 亚洲精品国产品国语在线app| 日韩一区二区麻豆国产| 国产福利一区在线| 亚洲制服欧美中文字幕中文字幕| 欧美电影精品一区二区| 欧美在线免费播放| 国产精品1区二区.| 日本亚洲最大的色成网站www| 久久久美女毛片| 欧美日韩精品一区二区天天拍小说 | 中文字幕制服丝袜一区二区三区| 欧美精品在线观看播放| 不卡一区二区在线| 国产精品一品二品| 久久er精品视频| 午夜欧美2019年伦理| 亚洲激情图片小说视频| 国产精品女主播在线观看| 日韩欧美中文一区| 精品视频123区在线观看| 99久久婷婷国产综合精品电影| 精品无人码麻豆乱码1区2区| 婷婷一区二区三区| 亚洲国产精品麻豆| 亚洲午夜电影网| 夜夜揉揉日日人人青青一国产精品| 国产精品成人一区二区艾草| 国产女人aaa级久久久级| 国产三级精品在线| 中文字幕第一区| 1024国产精品| 亚洲一区二区中文在线| 亚洲一级二级三级在线免费观看| 亚洲欧洲综合另类| 午夜电影网一区| 男男成人高潮片免费网站| 狠狠色丁香久久婷婷综合_中 | 国产一区二区三区不卡在线观看| 蜜臀av国产精品久久久久| 麻豆freexxxx性91精品| 国产伦精一区二区三区| 99视频国产精品| 正在播放亚洲一区| 国产日韩综合av| 亚洲午夜精品在线| 美女脱光内衣内裤视频久久网站 | 欧美一级高清大全免费观看| www国产精品av| 亚洲精选免费视频| 久久99在线观看| 91黄色激情网站| 精品国产一区二区三区久久影院 | 欧美日本在线观看| 久久老女人爱爱| 亚洲在线中文字幕| 国产一区日韩二区欧美三区| 欧美吞精做爰啪啪高潮| 国产午夜精品一区二区| 午夜精品视频在线观看| 99麻豆久久久国产精品免费优播| 欧美综合天天夜夜久久| 久久久久久久综合色一本| 亚洲码国产岛国毛片在线| 国产福利精品导航| 91精品麻豆日日躁夜夜躁| 国产精品美女一区二区在线观看| 麻豆成人91精品二区三区| 91成人国产精品| 中文字幕在线视频一区| 久久66热偷产精品| 欧美日韩高清在线播放| 一区二区三区国产豹纹内裤在线 | 99久久精品国产毛片| 久久久久久免费网| 韩国毛片一区二区三区| 日韩三级视频中文字幕| 午夜伦欧美伦电影理论片| 色吧成人激情小说| 玉米视频成人免费看| 在线免费观看日韩欧美| 自拍偷拍国产精品| 9人人澡人人爽人人精品| 国产日韩欧美在线一区| 成人av动漫在线| 中文字幕日韩一区| 欧美影院一区二区三区| 天堂va蜜桃一区二区三区| 日韩午夜在线影院| 国产一区二区在线视频| 国产午夜精品久久久久久久| voyeur盗摄精品| 亚洲a一区二区| 久久一二三国产| 91麻豆国产香蕉久久精品| 亚洲一区二区欧美日韩| 欧美v亚洲v综合ⅴ国产v| 丁香五精品蜜臀久久久久99网站 | 久久一二三国产| 91亚洲精品久久久蜜桃网站 | 成人性色生活片| 性做久久久久久免费观看 | 亚洲综合一二三区| 精品久久久久久久久久久久久久久 | 日本一区二区综合亚洲| 欧美日韩中字一区|